Suppr超能文献

检测具有结构意义的tRNA序列中的相关性。

Detection of correlations in tRNA sequences with structural implications.

作者信息

Klingler T M, Brutlag D L

机构信息

Department of Biochemistry, Stanford University School of Medicine, CA 94305-5307, USA.

出版信息

Proc Int Conf Intell Syst Mol Biol. 1993;1:225-33.

PMID:7584340
Abstract

Using an flexible representation of biological sequences, we have performed a comparative analysis of 1208 known tRNA sequences. We believe we our technique is a more sensitive method for detecting structural and functional relationships in sets of aligned sequences because we use a flexible representation (for sequences), as well as a general statistical method that can detect a wide range of relationships between positions in a sequence. Our method utilizes functional classifications of the sequence building-blocks (nucleotide bases and amino acids) based on physical or chemical properties. This flexibility in sequence representation improves the significance of finding sequence relationships mediated by the defining property. For example, using a purine/pyrimidine classification, we can detect base-stacking interactions in sets of nucleotide sequences that form base-paired helices. We use several statistical measures, including chi 2-tests, Monte Carlo simulations and an information measure to detect significant correlations in sequences. In this paper we illustrate our method by analyzing a set of tRNA sequences and showing that the correlations our program discovers, in each case, correspond to the known base-pairing and higher order interactions observed in tRNA crystal structures. Furthermore, we show that novel and interesting features of tRNAs are detected when sequence correlations with the charged amino acid (and anticodon) are evaluated. This technique is a powerful method for predicting the structure of RNAs and for analyzing specific functional characteristics.

摘要

我们采用生物序列的灵活表示方法,对1208个已知的tRNA序列进行了比较分析。我们认为我们的技术是检测比对序列集中结构和功能关系的一种更灵敏的方法,因为我们使用了灵活的表示方法(针对序列)以及一种通用的统计方法,该方法能够检测序列中位置之间的广泛关系。我们的方法基于物理或化学性质对序列构建模块(核苷酸碱基和氨基酸)进行功能分类。序列表示中的这种灵活性提高了发现由定义性质介导的序列关系的显著性。例如,使用嘌呤/嘧啶分类,我们可以在形成碱基配对螺旋的核苷酸序列集中检测碱基堆积相互作用。我们使用多种统计方法,包括卡方检验、蒙特卡罗模拟和一种信息度量方法来检测序列中的显著相关性。在本文中,我们通过分析一组tRNA序列来说明我们的方法,并表明我们的程序在每种情况下发现的相关性与在tRNA晶体结构中观察到的已知碱基配对和高阶相互作用相对应。此外,我们表明,当评估与带电荷氨基酸(和反密码子)的序列相关性时,会检测到tRNA的新颖有趣的特征。这项技术是预测RNA结构和分析特定功能特征的有力方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验