Suppr超能文献

一种用于风险建模的混合似然算法。

A hybrid likelihood algorithm for risk modelling.

作者信息

Kellerer A M, Kreisheimer M, Chmelevsky D, Barclay D

机构信息

Strahlenbiologisches Institut, Ludwig-Maximilians-Universität München, Germany.

出版信息

Radiat Environ Biophys. 1995 Mar;34(1):13-20. doi: 10.1007/BF01210540.

Abstract

The risk of radiation-induced cancer is assessed through the follow-up of large cohorts, such as atomic bomb survivors or underground miners who have been occupationally exposed to radon and its decay products. The models relate to the dose, age and time dependence of the excess tumour rates, and they contain parameters that are estimated in terms of maximum likelihood computations. The computations are performed with the software package EPI-CURE, which contains the two main options of person-by person regression or of Poisson regression with grouped data. The Poisson regression is most frequently employed, but there are certain models that require an excessive number of cells when grouped data are used. One example involves computations that account explicitly for the temporal distribution of continuous exposures, as they occur with underground miners. In past work such models had to be approximated, but it is shown here that they can be treated explicitly in a suitably reformulated person-by person computation of the likelihood. The algorithm uses the familiar partitioning of the log-likelihood into two terms, L1 and L0. The first term, L1, represents the contribution of the 'events' (tumours). It needs to be evaluated in the usual way, but constitutes no computational problem. The second term, L0, represents the event-free periods of observation. It is, in its usual form, unmanageable for large cohorts. However, it can be reduced to a simple form, in which the number of computational steps is independent of cohort size. The method requires less computing time and computer memory, but more importantly it leads to more stable numerical results by obviating the need for grouping the data. The algorithm may be most relevant to radiation risk modelling, but it can facilitate the modelling of failure-time data in general.

摘要

辐射诱发癌症的风险是通过对大型队列进行随访来评估的,比如原子弹爆炸幸存者或职业性接触氡及其衰变产物的地下矿工。这些模型涉及到额外肿瘤发生率与剂量、年龄和时间的相关性,并且包含通过最大似然计算来估计的参数。计算是使用软件包EPI - CURE进行的,该软件包包含逐个个体回归或分组数据的泊松回归这两种主要选项。泊松回归是最常使用的,但有某些模型在使用分组数据时需要过多的单元格。一个例子涉及到明确考虑连续暴露的时间分布的计算,就像地下矿工所经历的那样。在过去的工作中,这样的模型必须进行近似处理,但这里表明它们可以在一个经过适当重新表述的逐个个体的似然计算中得到明确处理。该算法使用将对数似然熟悉地划分为两个项,L1和L0。第一项,L1,表示“事件”(肿瘤)的贡献。它需要以通常的方式进行评估,但不构成计算问题。第二项,L0,表示无事件观察期。以其通常形式,对于大型队列是难以处理的。然而,它可以简化为一种简单形式,其中计算步骤的数量与队列大小无关。该方法需要更少的计算时间和计算机内存,但更重要的是,通过避免对数据进行分组,它能产生更稳定的数值结果。该算法可能与辐射风险建模最为相关,但总体上它可以促进失效时间数据的建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验