Weinstein A M
Department of Physiology and Biophysics, Cornell University Medical College, New York, New York 10021, USA.
J Gen Physiol. 1995 May;105(5):617-41. doi: 10.1085/jgp.105.5.617.
The luminal membrane antiporter of the proximal tubule has been represented using the kinetic formulation of E. Heinz (1978. Mechanics and Engergetics of Biological Transport. Springer-Verlag, Berlin) with the assumption of equilibrium binding and 1:1 stoichiometry. Competitive binding and transport of NH+4 is included within this model. Ion affinities and permeation velocities were selected in a least-squares fit to the kinetic parameters determined experimentally in renal membrane vesicles (Aronson, P.S., M.A. Suhm, and J. Nee. 1983. Journal of Biological Chemistry. 258:6767-6771). The modifier role of internal H+ to enhance transport beyond the expected kinetics (Aronson, P.S., J. Nee, and M. A. Suhm. 1982. Nature. 299:161-163) is represented as a velocity effect of H+ binding to a single site. This kinetic formulation of the Na+/H+ antiporter was incorporated within a model of the rat proximal tubule (Weinstein, A. M. 1994. American Journal of Physiology. 267:F237-F248) as a replacement for the representation by linear nonequilibrium thermodynamics (NET). The membrane density of the antiporter was selected to yield agreement with the rate of tubular Na+ reabsorption. Simulation of 0.5 cm of tubule predicts that the activity of the Na+/H+ antiporter is the most important force for active secretion of ammonia. Model calculations of metabolic acid-base disturbances are performed and comparison is made among antiporter representations (kinetic model, kinetic model without internal modifier, and NET formulation). It is found that the ability to sharply turn off Na+/H+ exchange in cellular alkalosis substantially eliminates the cell volume increase associated with high HCO3- conditions. In the tubule model, diminished Na+/H+ exchange in alkalosis blunts the axial decrease in luminal HCO3- and thus diminishes paracellular reabsorption of Cl-. In this way, the kinetics of the Na+/H+ antiporter could act to enhance distal delivery of Na+, Cl-, and HCO3- in acute metabolic alkalosis.
近端小管的管腔膜逆向转运体已根据E. Heinz(1978年,《生物转运的力学与能量学》,施普林格出版社,柏林)的动力学公式进行描述,假设存在平衡结合和1:1化学计量关系。该模型纳入了NH₄⁺的竞争性结合和转运。离子亲和力和渗透速度通过最小二乘法拟合确定,以符合在肾膜囊泡中实验测定的动力学参数(Aronson, P.S., M.A. Suhm, and J. Nee. 1983. 《生物化学杂志》. 258:6767 - 6771)。内部H⁺增强转运超出预期动力学的调节作用(Aronson, P.S., J. Nee, and M. A. Suhm. 1982. 《自然》. 299:161 - 163)表现为H⁺与单个位点结合的速度效应。Na⁺/H⁺逆向转运体的这种动力学公式被纳入大鼠近端小管模型(Weinstein, A. M. 1994. 《美国生理学杂志》. 267:F237 - F248),以替代线性非平衡热力学(NET)的描述。选择逆向转运体的膜密度以使其与肾小管Na⁺重吸收速率一致。对0.5厘米长的小管进行模拟预测,Na⁺/H⁺逆向转运体的活性是氨主动分泌的最重要力量。进行了代谢性酸碱紊乱的模型计算,并对逆向转运体的不同描述(动力学模型、无内部调节剂的动力学模型和NET公式)进行了比较。结果发现,在细胞碱中毒时急剧关闭Na⁺/H⁺交换的能力基本上消除了与高HCO₃⁻条件相关的细胞体积增加。在小管模型中,碱中毒时Na⁺/H⁺交换减少使管腔HCO₃⁻的轴向降低变钝,从而减少了Cl⁻的细胞旁重吸收。通过这种方式,Na⁺/H⁺逆向转运体的动力学可在急性代谢性碱中毒时增强Na⁺、Cl⁻和HCO₃⁻向远端的输送。