Suppr超能文献

酿酒酵母杀伤菌株中杀伤表达所需的两个染色体基因。

Two chromosomal genes required for killing expression in killer strains of Saccharomyces cerevisiae.

作者信息

Wickner R B, Leibowitz M J

出版信息

Genetics. 1976 Mar 25;82(3):429-42. doi: 10.1093/genetics/82.3.429.

Abstract

The killer character of yeast is determined by a 1.4 X 10(6) molecular weight double-stranded RNA plasmid and at least 12 chromosomal genes. Wild-type strains of yeast that carry this plasmid (killers) secret a toxin which is lethal only to strains not carrying this plasmid (sensitives).--We have isolated 28 independent recessive chromosomal mutants of a killer strain that have lost the ability to secrete an active toxin but remain resistant to the effects of the toxin and continue to carry the complete cytoplasmic killer genome. These mutants define two complementation groups, kex1 and kex2. Kex1 is located on chromosome VII between ade5 and lys5. Kex2 is located on chromosome XIV, but it does not show meiotic linkage to any gene previously located on this chromosome.--When the killer plasmid of kex1 or kex2 strains is eliminated by curing with heat or cycloheximide, the strains become sensitive to killing. The mutant phenotype reappears among the meiotic segregants in a cross with a normal killer. Thus, the kex phenotype does not require an alteration of the killer plasmid.--Kex1 and kex2 strains each contain near-normal levels of the 1.4 x 10(6) molecular weight double-stranded RNA, whose presence is correlated with the presence of the killer genome.

摘要

酵母的杀伤特性由一个分子量为1.4×10⁶的双链RNA质粒和至少12个染色体基因决定。携带该质粒的酵母野生型菌株(杀伤型)分泌一种毒素,该毒素仅对不携带此质粒的菌株(敏感型)具有致死性。——我们从一个杀伤型菌株中分离出28个独立的隐性染色体突变体,这些突变体失去了分泌活性毒素的能力,但仍对毒素的作用具有抗性,并继续携带完整的细胞质杀伤基因组。这些突变体定义了两个互补群,即kex1和kex2。Kex1位于第VII号染色体上ade5和lys5之间。Kex2位于第XIV号染色体上,但它与该染色体上先前定位的任何基因均未表现出减数分裂连锁关系。——当通过加热或用环己酰亚胺处理消除kex1或kex2菌株的杀伤质粒时,这些菌株对杀伤变得敏感。在与正常杀伤型菌株的杂交中,减数分裂分离物中会再次出现突变体表型。因此,kex表型不需要杀伤质粒发生改变。——Kex1和kex2菌株各自含有接近正常水平的分子量为1.4×10⁶的双链RNA,其存在与杀伤基因组的存在相关。

相似文献

1
Two chromosomal genes required for killing expression in killer strains of Saccharomyces cerevisiae.
Genetics. 1976 Mar 25;82(3):429-42. doi: 10.1093/genetics/82.3.429.
2
Chromosomal superkiller mutants of Saccharomyces cerevisiae.
J Bacteriol. 1978 Dec;136(3):1002-7. doi: 10.1128/jb.136.3.1002-1007.1978.
4
7
Isolation and characterization of temperature-sensitive mak mutants of Saccharomyces cerevisiae.
J Bacteriol. 1980 Dec;144(3):1113-8. doi: 10.1128/jb.144.3.1113-1118.1980.
9
Secretion of Saccharomyces cerevisiae killer toxin: processing of the glycosylated precursor.
Mol Cell Biol. 1983 Aug;3(8):1362-70. doi: 10.1128/mcb.3.8.1362-1370.1983.

引用本文的文献

1
The Viral K1 Killer Yeast System: Toxicity, Immunity, and Resistance.
Yeast. 2024 Nov;41(11-12):668-680. doi: 10.1002/yea.3987. Epub 2025 Jan 24.
3
The evolutionary ecology of fungal killer phenotypes.
Proc Biol Sci. 2023 Aug 30;290(2005):20231108. doi: 10.1098/rspb.2023.1108. Epub 2023 Aug 16.
7
Role of protein synthesis in the replication of the killer virus of yeast.
Curr Genet. 1982 Jul;5(2):161-3. doi: 10.1007/BF00365709.
8
A mutant of Saccharomyces cerevisiae defective in arginyl-tRNA-protein transferase.
Curr Genet. 1983 Jul;7(4):285-8. doi: 10.1007/BF00376073.
10
Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast.
Nucleic Acids Res. 2011 Apr;39(7):2799-808. doi: 10.1093/nar/gkq1220. Epub 2010 Nov 24.

本文引用的文献

1
Biochemical Mutants in the Smut Fungus Ustilago Maydis.
Genetics. 1949 Sep;34(5):607-26. doi: 10.1093/genetics/34.5.607.
2
3
Genetic control of the cell-division cycle in yeast. I. Detection of mutants.
Proc Natl Acad Sci U S A. 1970 Jun;66(2):352-9. doi: 10.1073/pnas.66.2.352.
4
A nucleic acid associated with a killer strain of yeast.
Proc Natl Acad Sci U S A. 1973 Apr;70(4):1069-72. doi: 10.1073/pnas.70.4.1069.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验