Murdock D, Ensley B D, Serdar C, Thalen M
Amgen, Inc., Thousand Oaks, CA 93120.
Biotechnology (N Y). 1993 Mar;11(3):381-6. doi: 10.1038/nbt0393-381.
The efficient production of the textile dye indigo by fermentation has been a goal since the early 1980's when the first bacterial strains capable of this synthesis were constructed. We report here the development of a recombinant microorganism that directly synthesizes indigo from glucose. This construction involved the cloning and genetic manipulation of at least 9 genes and modifications of the fermentation medium to help stabilize the biosynthetic activity. Directed genetic changes in two operons caused significant increases in reaction rates and in the stability of the catalytic enzymes. This example of whole cell catalysis by a recombinant Escherichia coli represents a novel and environmentally sound approach to the synthesis of a high value specialty chemical.
自20世纪80年代初构建出首批能够合成纺织染料靛蓝的细菌菌株以来,通过发酵高效生产靛蓝一直是一个目标。我们在此报告一种能直接从葡萄糖合成靛蓝的重组微生物的研发情况。这一构建过程涉及至少9个基因的克隆和基因操作,以及对发酵培养基的改良以帮助稳定生物合成活性。两个操纵子中的定向基因变化导致反应速率和催化酶稳定性显著提高。这种重组大肠杆菌进行全细胞催化的例子代表了一种合成高价值特种化学品的新颖且环保的方法。