Suppr超能文献

Pho81p(Pho85p蛋白激酶的抑制剂)在酿酒酵母磷信号转导途径中的功能结构域。

Functional domains of Pho81p, an inhibitor of Pho85p protein kinase, in the transduction pathway of Pi signals in Saccharomyces cerevisiae.

作者信息

Ogawa N, Noguchi K, Sawai H, Yamashita Y, Yompakdee C, Oshima Y

机构信息

Department of Biotechnology, Faculty of Engineering, Osaka University, Japan.

出版信息

Mol Cell Biol. 1995 Feb;15(2):997-1004. doi: 10.1128/MCB.15.2.997.

Abstract

The PHO81 gene is thought to encode an inhibitor of the negative regulators (Pho80p and Pho85p) in the phosphatase (PHO) regulon. Transcription of PHO81 is regulated by Pi signals through the same PHO regulatory system. Elimination of the PHO81 promoter or its substitution by the GAL1 promoter revealed that stimulation of the PHO regulatory system requires both increased transcription of PHO81 and a Pi starvation signal. The predicted Pho81p protein contains 1,179 amino acids (aa) and has six repeats of an ankyrin-like sequence in its central region. The minimum amino acid sequence required for Pho81p function was narrowed down to a 141-aa segment (aa 584 to 724), which contains the fifth and sixth repeats of the ankyrin-like motif. The third to sixth repeats of the ankyrin-like motif of Pho81p have significant similarities to that of p16INK4, which inhibits activity of the human cyclin D-CDK4 kinase complex. Deletion analyses revealed that the N- and C-terminal regions of Pho81p behave as negative and positive regulatory domains, respectively, for the minimal 141-aa region. The negative regulatory activity of the N-terminal domain was antagonized by a C-terminal segment of Pho81p supplied in trans. All four known classes of PHO81c mutations that show repressible acid phosphatase activity in high-Pi medium affect the N-terminal half of Pho81p. An in vitro assay showed that a glutathione S-transferase-Pho81p fusion protein inhibits the Pho85p protein kinase. Association of Pho81p with Pho85p or with the Pho80p-Pho85p complex was demonstrated by the two-hybrid system.

摘要

PHO81基因被认为编码磷酸酶(PHO)调节子中负调节因子(Pho80p和Pho85p)的一种抑制剂。PHO81的转录受磷酸根信号通过相同的PHO调节系统调控。去除PHO81启动子或用GAL1启动子替换它,结果表明,PHO调节系统的激活既需要PHO81转录增加,也需要磷酸根饥饿信号。预测的Pho81p蛋白含有1179个氨基酸(aa),其中心区域有六个锚蛋白样序列重复。Pho81p功能所需的最小氨基酸序列被缩小到一个141个氨基酸的片段(第584至724位氨基酸),该片段包含锚蛋白样基序的第五和第六个重复。Pho81p锚蛋白样基序的第三至第六个重复与p16INK4的该基序有显著相似性,p16INK4抑制人细胞周期蛋白D - CDK4激酶复合物的活性。缺失分析表明,对于最小的141个氨基酸区域,Pho81p的N端和C端区域分别表现为负调节域和正调节域。N端结构域的负调节活性被反式提供的Pho81p的C端片段拮抗。在高磷酸根培养基中表现出可抑制酸性磷酸酶活性的所有四种已知类型的PHO81c突变都影响Pho81p的N端一半。体外试验表明,谷胱甘肽S - 转移酶 - Pho81p融合蛋白抑制Pho85p蛋白激酶。通过双杂交系统证明了Pho81p与Pho85p或与Pho80p - Pho85p复合物的结合。

相似文献

2
Regulation by phosphorylation of Pho81p, a cyclin-dependent kinase inhibitor in Saccharomyces cerevisiae.
Curr Genet. 2004 Jul;46(1):10-9. doi: 10.1007/s00294-004-0502-z. Epub 2004 May 4.
4
Ddi1p and Rad23p play a cooperative role as negative regulators in the PHO pathway in Saccharomyces cerevisiae.
Biochem Biophys Res Commun. 2008 Jan 25;365(4):821-5. doi: 10.1016/j.bbrc.2007.11.044. Epub 2007 Nov 21.
5
Function of hybrid human-yeast cyclin-dependent kinases in Saccharomyces cerevisiae.
Mol Gen Genet. 1998 Oct;260(1):120-30. doi: 10.1007/s004380050878.
9
Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae.
Nucleic Acids Res. 1993 Apr 25;21(8):1975-82. doi: 10.1093/nar/21.8.1975.
10
Functional analysis of the cyclin-dependent kinase inhibitor Pho81 identifies a novel inhibitory domain.
Mol Cell Biol. 2001 Oct;21(19):6695-705. doi: 10.1128/MCB.21.19.6695-6705.2001.

引用本文的文献

1
Kcs1 and Vip1: The Key Enzymes behind Inositol Pyrophosphate Signaling in .
Biomolecules. 2024 Jan 26;14(2):152. doi: 10.3390/biom14020152.
3
Plant phosphate nutrition: sensing the stress.
Stress Biol. 2022 Mar 3;2(1):16. doi: 10.1007/s44154-022-00039-0.
5
Phosphate Homeostasis - A Vital Metabolic Equilibrium Maintained Through the INPHORS Signaling Pathway.
Front Microbiol. 2020 Jul 14;11:1367. doi: 10.3389/fmicb.2020.01367. eCollection 2020.
8
Core regulatory components of the PHO pathway are conserved in the methylotrophic yeast Hansenula polymorpha.
Curr Genet. 2016 Aug;62(3):595-605. doi: 10.1007/s00294-016-0565-7. Epub 2016 Jan 21.
9
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae.
Genetics. 2012 Mar;190(3):885-929. doi: 10.1534/genetics.111.133306.
10
Acid phosphatases of budding yeast as a model of choice for transcription regulation research.
Enzyme Res. 2011;2011:356093. doi: 10.4061/2011/356093. Epub 2011 Jul 10.

本文引用的文献

1
Molecular analysis of the PHO81 gene of Saccharomyces cerevisiae.
Nucleic Acids Res. 1993 Apr 25;21(8):1975-82. doi: 10.1093/nar/21.8.1975.
4
5
The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases.
Cell. 1993 Nov 19;75(4):805-16. doi: 10.1016/0092-8674(93)90499-g.
6
Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85.
Science. 1994 Feb 25;263(5150):1153-6. doi: 10.1126/science.8108735.
7
Phosphate-regulated inactivation of the kinase PHO80-PHO85 by the CDK inhibitor PHO81.
Science. 1994 Oct 7;266(5182):122-6. doi: 10.1126/science.7939631.
8
Structure of a split yeast gene: complete nucleotide sequence of the actin gene in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 1980 May;77(5):2546-50. doi: 10.1073/pnas.77.5.2546.
9
Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae.
Mol Cell Biol. 1984 Aug;4(8):1440-8. doi: 10.1128/mcb.4.8.1440-1448.1984.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验