Suppr超能文献

莫科拉病毒糖蛋白和嵌合蛋白在拯救感染性缺陷狂犬病病毒颗粒时可替代狂犬病病毒糖蛋白。

Mokola virus glycoprotein and chimeric proteins can replace rabies virus glycoprotein in the rescue of infectious defective rabies virus particles.

作者信息

Mebatsion T, Schnell M J, Conzelmann K K

机构信息

Federal Research Centre for Virus Diseases of Animals, Tübingen, Germany.

出版信息

J Virol. 1995 Mar;69(3):1444-51. doi: 10.1128/JVI.69.3.1444-1451.1995.

Abstract

A reverse genetics approach which allows the generation of infectious defective rabies virus (RV) particles entirely from plasmid-encoded genomes and proteins (K.-K. Conzelmann and M. Schnell, J. Virol. 68:713-719, 1994) was used to investigate the ability of a heterologous lyssavirus glycoprotein (G) and chimeric G constructs to function in the formation of infectious RV-like particles. Virions containing a chloramphenicol acetyltransferase (CAT) reporter gene (SDI-CAT) were generated in cells simultaneously expressing the genomic RNA analog, the RV N, P, M, and L proteins, and engineered G constructs from transfected plasmids. The infectivity of particles was determined by a CAT assay after passage to helper virus-infected cells. The heterologous G protein from Eth-16 virus (Mokola virus, lyssavirus serotype 3) as well as a construct in which the ectodomain of RV G was fused to the cytoplasmic and transmembrane domains of the Eth-16 virus G rescued infectious SDI-CAT particles. In contrast, a chimeric protein composed of the amino-terminal half of the Eth-16 virus G and the carboxy-terminal half of RV G failed to produce infectious particles. Site-directed mutagenesis was used to convert the antigenic site III of RV G to the corresponding sequence of Eth-16 G. This chimeric protein rescued infectious SDI-CAT particles as efficiently as RV G. Virions containing the chimeric protein were specifically neutralized by an anti-Eth-16 virus serum and escaped neutralization by a monoclonal antibody directed against RV antigenic site III. The results show that entire structural domains as well as short surface epitopes of lyssavirus G proteins may be exchanged without affecting the structure required to mediate infection of cells.

摘要

一种反向遗传学方法可从质粒编码的基因组和蛋白质中完全产生感染性缺陷狂犬病病毒(RV)颗粒(K.-K. 康策尔曼和M. 施内尔,《病毒学杂志》68:713 - 719,1994年),该方法被用于研究异源狂犬病病毒糖蛋白(G)和嵌合G构建体在感染性RV样颗粒形成过程中的功能。在同时表达基因组RNA类似物、RV N、P、M和L蛋白以及来自转染质粒的工程化G构建体的细胞中,产生了含有氯霉素乙酰转移酶(CAT)报告基因的病毒粒子(SDI - CAT)。将这些颗粒传代至辅助病毒感染的细胞后,通过CAT测定法确定颗粒的感染性。来自Eth - 16病毒(莫科拉病毒,狂犬病病毒血清型3)的异源G蛋白以及一种构建体(其中RV G的胞外结构域与Eth - 16病毒G的胞质和跨膜结构域融合)拯救了感染性SDI - CAT颗粒。相比之下,一种由Eth - 16病毒G的氨基末端一半和RV G的羧基末端一半组成的嵌合蛋白未能产生感染性颗粒。使用定点诱变将RV G的抗原位点III转换为Eth - 16 G的相应序列。这种嵌合蛋白拯救感染性SDI - CAT颗粒的效率与RV G相同。含有该嵌合蛋白的病毒粒子被抗Eth - 16病毒血清特异性中和,并逃脱了针对RV抗原位点III的单克隆抗体的中和作用。结果表明,狂犬病病毒G蛋白的整个结构域以及短表面表位可以交换,而不影响介导细胞感染所需的结构。

相似文献

2
Chimeric lyssavirus glycoproteins with increased immunological potential.
J Virol. 1999 Jan;73(1):225-33. doi: 10.1128/JVI.73.1.225-233.1999.
4
Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins.
J Virol. 1994 Feb;68(2):713-9. doi: 10.1128/JVI.68.2.713-719.1994.
7
Molecular analysis of rabies-related viruses from Ethiopia.
Onderstepoort J Vet Res. 1993 Dec;60(4):289-94.
9
Double-labeled rabies virus: live tracking of enveloped virus transport.
J Virol. 2008 Jan;82(1):237-45. doi: 10.1128/JVI.01342-07. Epub 2007 Oct 10.

引用本文的文献

1
Rabies virus as vector for development of vaccine: pros and cons.
Front Vet Sci. 2024 Sep 25;11:1475431. doi: 10.3389/fvets.2024.1475431. eCollection 2024.
3
Rhabdoviruses as vectors for vaccines and therapeutics.
Curr Opin Virol. 2020 Oct;44:169-182. doi: 10.1016/j.coviro.2020.09.003. Epub 2020 Oct 29.
4
Lyssavirus Vaccine with a Chimeric Glycoprotein Protects across Phylogroups.
Cell Rep. 2020 Jul 21;32(3):107920. doi: 10.1016/j.celrep.2020.107920.
8
An anterograde rabies virus vector for high-resolution large-scale reconstruction of 3D neuron morphology.
Brain Struct Funct. 2015;220(3):1369-79. doi: 10.1007/s00429-014-0730-z. Epub 2014 Apr 11.
9
Characterization and potential diagnostic application of monoclonal antibodies specific to rabies virus.
J Biomed Res. 2010 Sep;24(5):395-403. doi: 10.1016/S1674-8301(10)60053-X.
10
Revealing the secrets of neuronal circuits with recombinant rabies virus technology.
Front Neural Circuits. 2013 Jan 24;7:2. doi: 10.3389/fncir.2013.00002. eCollection 2013.

本文引用的文献

1
Low-pH conformational changes of rabies virus glycoprotein and their role in membrane fusion.
J Virol. 1993 Mar;67(3):1365-72. doi: 10.1128/JVI.67.3.1365-1372.1993.
2
Molecular diversity of the Lyssavirus genus.
Virology. 1993 May;194(1):70-81. doi: 10.1006/viro.1993.1236.
3
Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins.
J Virol. 1994 Feb;68(2):713-9. doi: 10.1128/JVI.68.2.713-719.1994.
5
Infectious rabies viruses from cloned cDNA.
EMBO J. 1994 Sep 15;13(18):4195-203. doi: 10.1002/j.1460-2075.1994.tb06739.x.
6
Molecular analysis of rabies-related viruses from Ethiopia.
Onderstepoort J Vet Res. 1993 Dec;60(4):289-94.
7
Mechanisms of rabies virus neutralization.
Virology. 1993 May;194(1):302-13. doi: 10.1006/viro.1993.1261.
8
Use of protein A-bearing staphylococci for the immunoprecipitation and isolation of antigens from cells.
Methods Enzymol. 1981;73(Pt B):442-59. doi: 10.1016/0076-6879(81)73084-2.
9
Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells.
Mol Cell Biol. 1982 Sep;2(9):1044-51. doi: 10.1128/mcb.2.9.1044-1051.1982.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验