Suppr超能文献

恒化器培养作为研究酵母中糖转运的一种工具。

Chemostat cultivation as a tool for studies on sugar transport in yeasts.

作者信息

Weusthuis R A, Pronk J T, van den Broek P J, van Dijken J P

机构信息

Department of Microbiology and Enzymology, Kluyver Laboratory of Biotechnology, Delft University of Technology, The Netherlands.

出版信息

Microbiol Rev. 1994 Dec;58(4):616-30. doi: 10.1128/mr.58.4.616-630.1994.

Abstract

Chemostat cultivation enables investigations into the effects of individual environmental parameters on sugar transport in yeasts. Various means are available to manipulate the specific rate of sugar uptake (qs) in sugar-limited chemostat cultures. A straightforward way to manipulate qs is variation of the dilution rate, which, in substrate-limited chemostat cultures, is equal to the specific growth rate. Alternatively, qs can be varied independently of the growth rate by mixed-substrate cultivation or by variation of the biomass yield on sugar. The latter can be achieved, for example, by addition of nonmetabolizable weak acids to the growth medium or by variation of the oxygen supply. Such controlled manipulation of metabolic fluxes cannot be achieved in batch cultures, in which various parameters that are essential for the kinetics of sugar transport cannot be controlled. In sugar-limited chemostat cultures, yeasts adapt their sugar transport systems to cope with the low residual sugar concentrations, which are often in the micromolar range. Under the conditions, yeasts with high-affinity proton symport carriers have a competitive advantage over yeasts that transport sugars via facilitated-diffusion carriers. Chemostat cultivation offers unique possibilities to study the energetic consequences of sugar transport in growing cells. For example, anaerobic, sugar-limited chemostat cultivation has been used to quantify the energy requirement for maltose-proton symport in Saccharomyces cerevisiae. Controlled variation of growth conditions in chemostat cultures can be used to study the differential expression of genes involved in sugar transport and as such can make an important contribution to the ongoing studies on the molecular biology of sugar transport in yeasts.

摘要

恒化器培养能够研究单个环境参数对酵母中糖转运的影响。在糖限制的恒化器培养中,有多种方法可用于操纵糖摄取的比速率(qs)。操纵qs的一种直接方法是改变稀释率,在底物限制的恒化器培养中,稀释率等于比生长速率。或者,可以通过混合底物培养或改变糖上的生物量产量来独立于生长速率改变qs。例如,通过向生长培养基中添加不可代谢的弱酸或通过改变氧气供应可以实现后者。在分批培养中无法实现这种对代谢通量的控制操纵,因为在分批培养中糖转运动力学所必需的各种参数无法控制。在糖限制的恒化器培养中,酵母会调整其糖转运系统以应对通常处于微摩尔范围内的低残留糖浓度。在这种条件下,具有高亲和力质子同向转运载体的酵母比通过易化扩散载体转运糖的酵母具有竞争优势。恒化器培养为研究生长细胞中糖转运的能量后果提供了独特的可能性。例如,厌氧、糖限制的恒化器培养已被用于量化酿酒酵母中麦芽糖-质子同向转运的能量需求。恒化器培养中生长条件的可控变化可用于研究参与糖转运的基因的差异表达,因此可为正在进行的酵母糖转运分子生物学研究做出重要贡献。

相似文献

4
Kinetics of growth and sugar consumption in yeasts.酵母中生长和糖消耗的动力学
Antonie Van Leeuwenhoek. 1993;63(3-4):343-52. doi: 10.1007/BF00871229.

引用本文的文献

8
Privatization of public goods can cause population decline.公共物品的私有化可能导致人口减少。
Nat Ecol Evol. 2019 Aug;3(8):1206-1216. doi: 10.1038/s41559-019-0944-9. Epub 2019 Jul 22.

本文引用的文献

7
Functional studies of yeast glucokinase.酵母葡萄糖激酶的功能研究。
J Bacteriol. 1993 Jun;175(11):3289-94. doi: 10.1128/jb.175.11.3289-3294.1993.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验