Suppr超能文献

用于数字胸部图像中肺结节自动检测的改进计算机辅助检测方案的开发。

Development of an improved CAD scheme for automated detection of lung nodules in digital chest images.

作者信息

Xu X W, Doi K, Kobayashi T, MacMahon H, Giger M L

机构信息

Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, University of Chicago, Illinois 60637, USA.

出版信息

Med Phys. 1997 Sep;24(9):1395-403. doi: 10.1118/1.598028.

Abstract

Lung cancer is the leading cause of cancer deaths in men and women in the United States, with a 5-year survival rate of only about 13%. However, this survival rate can be improved to 47% if the disease is diagnosed and treated at an early stage. In this study, we developed an improved computer-aided diagnosis (CAD) scheme for the automated detection of lung nodules in digital chest images to assist radiologists, who could miss up to 30% of the actually positive cases in their daily practice. Two hundred PA chest radiographs, 100 normals and 100 abnormals, were used as the database for our study. The presence of nodules in the 100 abnormal cases was confirmed by two experienced radiologists on the basis of CT scans or radiographic follow-up. In our CAD scheme, nodule candidates were selected initially by multiple gray-level thresholding of the difference image (which corresponds to the subtraction of a signal-enhanced image and a signal-suppressed image) and then classified into six groups. A large number of false positives were eliminated by adaptive rule-based tests and an artificial neural network (ANN). The CAD scheme achieved, on average, a sensitivity of 70% with 1.7 false positives per chest image, a performance which was substantially better as compared with other studies. The CPU time for the processing of one chest image was about 20 seconds on an IBM RISC/6000 Powerstation 590. We believe that the CAD scheme with the current performance is ready for initial clinical evaluation.

摘要

肺癌是美国男性和女性癌症死亡的主要原因,其5年生存率仅约为13%。然而,如果疾病在早期被诊断和治疗,这一生存率可提高到47%。在本研究中,我们开发了一种改进的计算机辅助诊断(CAD)方案,用于在数字胸部图像中自动检测肺结节,以协助放射科医生,他们在日常工作中可能会漏诊高达30%的实际阳性病例。200张胸部后前位(PA)X线片,100张正常片和100张异常片,被用作我们研究的数据库。100例异常病例中的结节存在情况由两名经验丰富的放射科医生根据CT扫描或影像学随访予以确认。在我们的CAD方案中,首先通过差异图像(对应于信号增强图像与信号抑制图像相减)的多灰度级阈值处理来选择结节候选区域,然后将其分为六组。通过基于自适应规则的测试和人工神经网络(ANN)消除了大量假阳性。该CAD方案平均实现了70%的敏感度,每张胸部图像有1.7例假阳性,与其他研究相比,这一性能有显著提高。在一台IBM RISC/6000 Powerstation 590上处理一张胸部图像的CPU时间约为20秒。我们认为,具有当前性能的CAD方案已准备好进行初步临床评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验