Suppr超能文献

持续运动和间歇运动对运动性哮喘运动员的保护作用。

The protective effects of continuous and interval exercise in athletes with exercise-induced asthma.

作者信息

McKenzie D C, McLuckie S L, Stirling D R

机构信息

School of Human Kinetics, University of British Columbia, Vancouver, Canada.

出版信息

Med Sci Sports Exerc. 1994 Aug;26(8):951-6.

PMID:7968428
Abstract

To determine the effect of two forms of warm-up on postexercise bronchoconstriction in athletes with exercise-induced asthma, 12 moderately trained persons with asthma (age = 26.5 +/- 2.2 yr; height = 169.2 +/- 2.6 cm; weight = 64.3 +/- 2.6kg; VO2max = 52.7 +/- 1.3 ml.kg-1.min-1) were tested under three experimental conditions; continuous warm-up (CW), interval warm-up (IW), and control (C). CW consisted of 15 min of treadmill running at a velocity corresponding to 60% VO2max followed by an exercise challenge test (ET = 6 min at 90% VO2max). IW involved 8 x 30-s runs (1.5 min rest between bouts of exercise), at an intensity equivalent to 100% VO2max, followed by an ET. C consisted of only the ET. FEV1, FVC, and MMEFR were measured prior to the experimental conditions, repeated before the ET, and every 2 min during a 25-min passive recovery period, using a Breon spirometer. Postexercise changes in pulmonary function were recorded as the largest decrese in FEV1, FVC, and MMEFR during the recovery period, and expressed as a percentage of baseline values. Significant differences were detected in %FEV1 (34. 6,16.7,29.7: P = 0.009), %FVC (30.0,10.7,21.0: P = 0.03), and %MMEFR (50.0,30.2,43.4: P = 0.05), in comparing C, CW, and IW, respectively. Scheffe's test detected significance (P < 0.05) between C and CW for all three dependent variables; no statistical significance between C and IW or IW and CW occurred. These data indicate that a continuous warm-up of 15 min at 60% VO2max can significantly decrease postexercise bronchoconstriction in moderately trained athletes.

摘要

为了确定两种热身形式对运动诱发哮喘运动员运动后支气管收缩的影响,对12名中度训练的哮喘患者(年龄 = 26.5 ± 2.2岁;身高 = 169.2 ± 2.6厘米;体重 = 64.3 ± 2.6千克;最大摄氧量 = 52.7 ± 1.3毫升·千克⁻¹·分钟⁻¹)在三种实验条件下进行测试:持续热身(CW)、间歇热身(IW)和对照(C)。持续热身包括在跑步机上以相当于60%最大摄氧量的速度跑15分钟,随后进行运动激发试验(ET = 在90%最大摄氧量下进行6分钟)。间歇热身包括8次30秒的跑步(每次运动间歇休息1.5分钟),强度相当于100%最大摄氧量,随后进行运动激发试验。对照仅包括运动激发试验。在实验条件之前、运动激发试验之前以及在25分钟的被动恢复期内每隔2分钟,使用Breon肺量计测量第一秒用力呼气量(FEV1)、用力肺活量(FVC)和最大呼气中期流速(MMEFR)。运动后肺功能的变化记录为恢复期内FEV1、FVC和MMEFR的最大下降值,并表示为基线值的百分比。在比较C、CW和IW时,分别在%FEV1(34.6、16.7、29.7:P = 0.009)、%FVC(30.0、10.7、21.0:P = 0.03)和%MMEFR(50.0、30.2、43.4:P = 0.05)方面检测到显著差异。谢费检验在所有三个因变量上检测到C和CW之间存在显著性(P < 0.05);C和IW之间或IW和CW之间未出现统计学显著性。这些数据表明,以60%最大摄氧量进行15分钟的持续热身可显著降低中度训练运动员运动后的支气管收缩。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验