Suppr超能文献

Effect of radiation quality on lesion complexity in cellular DNA.

作者信息

Prise K M, Folkard M, Newman H C, Michael B D

机构信息

CRC Gray Laboratory, Mount Vernon Hospital, Northwood, UK.

出版信息

Int J Radiat Biol. 1994 Nov;66(5):537-42. doi: 10.1080/09553009414551581.

Abstract

Understanding the critical lesions induced by ionizing radiation in DNA and their relationship to cellular effects is an important challenge in radiation biology. Much evidence has suggested that DNA double-strand breaks (dsb) are important lesions. Establishing a cause and effect relationship between initial levels of DNA dsb, their repair rate or the level of residual unrepaired breaks, and cellular effects has proved difficult in mammalian cells. Several studies have measured yields of DNA dsb after irradiation with radiations of differing linear energy transfer (LET). In general the RBEs for dsb induction (20-100 keV/microns) have been lower than the RBEs measured for cell survival and in many cases are around 1.0. Several studies have shown differences in the rejoining of dsb with less dsb rejoined after high-LET irradiation in comparison with low-LET radiation. These results suggest that there may be differences in the types of lesions induced by different radiations and scored as DNA dsb using current techniques. Track structure modelling studies have suggested that some lesions induced will be clustered at the sites of energy depositions and that uniquely large energy deposition events are produced by high-LET radiations. Assays need to be developed to measure complex lesions in both model DNA and cellular systems. Different levels of complexity need to be considered such as clustering of radicals close to DNA, localized areas of DNA damage (1-20 bp) and lesions which may be induced over larger distances. Studies using new and existing assays of DNA damage, coupled with irradiation at various LETs, are directed at understanding the role of lesion complexity in relation to cellular effects.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验