Cook K R, Karpen G H
Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037.
Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5219-21. doi: 10.1073/pnas.91.12.5219.
The demonstration by Zhang and Spradling (1) of efficient P element transposition into heterochromatic regions will aid ongoing studies of heterochromatin structure and function. P element insertions will provide entry points for further molecular analysis of heterochromatin and will allow the isolation of small and large heterochromatic deficiencies. The generation of heterochromatic P insertions also will aid the study of heterochromatic genes. Of the heterochromatic insertions isolated by Zhang and Spradling, five were homozygous lethal, and one of these defined a lethal locus not previously uncovered by heterochromatic deficiencies. P elements have previously been used to mutagenize and clone specific heterochromatic genes (14, 19, 26). New methods, like those described here (1, 32), should allow the efficient identification and molecular isolation of other single-copy heterochromatic genes. Furthermore, since position-effect suppression allowed the recovery of heterochromatic P insertions, it may also allow the recovery of insertions in euchromatic regions previously refractory to P mutagenesis. Studies of position-effect variegation show that genes normally found in heterochromatin require a heterochromatic context for normal expression and that heterochromatin is inhibitory to euchromatic gene expression (16). The physical basis of these related phenomena--chromatin assembly, nuclear positioning, and/or heterochromatin elimination--can be resolved only with a more thorough understanding of heterochromatin structure and functions. Analyzing heterochromatin also will help define the chromosomal components responsible for inheritance processes such as chromosome pairing, sister chromatid adhesion, and centromere function. These efforts will be facilitated by the effective use of P elements combined with other current molecular-genetic approaches.
张和斯普拉德林(1)所展示的P元件高效转座进入异染色质区域,将有助于正在进行的异染色质结构与功能研究。P元件插入将为异染色质的进一步分子分析提供切入点,并能够分离大小不同的异染色质缺失片段。产生异染色质P插入也将有助于对异染色质基因的研究。在张和斯普拉德林分离出的异染色质插入中,有5个是纯合致死的,其中一个确定了一个此前未被异染色质缺失所发现的致死位点。P元件此前已被用于诱变和克隆特定的异染色质基因(14、19、26)。像这里所描述的新方法(1、32),应该能够有效地鉴定和分子分离其他单拷贝异染色质基因。此外,由于位置效应抑制使得能够回收异染色质P插入,它也可能使得能够回收此前对P诱变有抗性的常染色质区域中的插入。位置效应斑驳的研究表明,通常存在于异染色质中的基因正常表达需要异染色质环境,并且异染色质对常染色质基因表达具有抑制作用(16)。这些相关现象——染色质组装、核定位和/或异染色质消除——的物理基础,只有在更深入了解异染色质结构和功能的情况下才能得到解决。分析异染色质也将有助于确定负责染色体配对、姐妹染色单体黏附以及着丝粒功能等遗传过程的染色体成分。有效利用P元件并结合其他当前的分子遗传学方法将促进这些研究工作。