Suppr超能文献

Systematic difference in the methylation of ribosomal ribonucleic acid from gram-positive and gram-negative bacteria.

作者信息

Tanaka T, Weisblum B

出版信息

J Bacteriol. 1975 Aug;123(2):771-4. doi: 10.1128/jb.123.2.771-774.1975.

Abstract

A survey of gram-positive and gram-negative organisms was performed to compare the distributionof N6-methylated adenine. It was found that (i) all the gram-positive strains tested, Staphylococcus aureus, Sarcina lutea, Bacillus stearothermophilus, Bacillus subtilis, and Bacillus megaterium, contain neither N6-monomethyl adenine (m6A) nor N6-dimethyladenine (m26A) in 23S ribosomal ribonucleic acid (rRNA). In the case of S. aureus and Streptococcus pyogenes, strains which are clinically resistant to erythromycin contain m26A. (ii) The gram-negative strains Salmonella typhimurium, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and Klebsiella pneumoniae all contain m6A but not m23A in 23S rRNA. These observations suggest the existence of at least one systematic structural difference between the ribosomes of the two classes of bacteria. Because of the demonstrated relationship between N6-dimethylation of adenine in 23S rRNA and clinical resistance to macrolide, lincosamide, and streptogramin B-type antibiotics in staphylococci and streptococci, the observed systematic differences found in rRNA methylation combined with greater cellular permeability may be related to the relatively greater efficacy of macrolide, lincosamide, and streptogramin B-type antibiotics in treating infections caused by gram-positive organisms.

摘要

相似文献

2
23S ribosomal ribonucleic acid of macrolide-producing streptomycetes contains methylated adenine.
J Bacteriol. 1979 Mar;137(3):1464-7. doi: 10.1128/jb.137.3.1464-1467.1979.
6
Multiplicity of macrolide-lincosamide-streptogramin antibiotic resistance determinants.
J Antimicrob Chemother. 1985 Jul;16 Suppl A:91-100. doi: 10.1093/jac/16.suppl_a.91.
8
[Study of macrolide, lincosamide, and streptogramin B antibiotics resistance in Staphylococcus aureus].
Yakugaku Zasshi. 2000 Apr;120(4):374-86. doi: 10.1248/yakushi1947.120.4_374.
9
Thermal denaturation of mesophilic and thermophilic 5S ribonucleic acids.
J Bacteriol. 1976 Mar;125(3):850-4. doi: 10.1128/jb.125.3.850-854.1976.
10
Macrolide antibiotics inhibit 50S ribosomal subunit assembly in Bacillus subtilis and Staphylococcus aureus.
Antimicrob Agents Chemother. 1995 Sep;39(9):2141-4. doi: 10.1128/AAC.39.9.2141.

引用本文的文献

1
mA modification: a new avenue for anti-cancer therapy.
Life Med. 2023 Apr 8;2(1):lnad008. doi: 10.1093/lifemedi/lnad008. eCollection 2023 Feb.
2
Epitranscriptomics: RNA Modifications in Bacteria and Archaea.
Microbiol Spectr. 2018 May;6(3). doi: 10.1128/microbiolspec.RWR-0015-2017.
3
The epigenetics of aging and neurodegeneration.
Prog Neurobiol. 2015 Aug;131:21-64. doi: 10.1016/j.pneurobio.2015.05.002. Epub 2015 Jun 11.
4
The dynamic epitranscriptome: N6-methyladenosine and gene expression control.
Nat Rev Mol Cell Biol. 2014 May;15(5):313-26. doi: 10.1038/nrm3785. Epub 2014 Apr 9.
6
Erythromycin resistance by ribosome modification.
Antimicrob Agents Chemother. 1995 Mar;39(3):577-85. doi: 10.1128/AAC.39.3.577.
9
Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria.
Microbiol Rev. 1983 Sep;47(3):361-409. doi: 10.1128/mr.47.3.361-409.1983.
10
23S ribosomal ribonucleic acid of macrolide-producing streptomycetes contains methylated adenine.
J Bacteriol. 1979 Mar;137(3):1464-7. doi: 10.1128/jb.137.3.1464-1467.1979.

本文引用的文献

2
The specificity of lincomycin binding to ribosomes.
Biochemistry. 1967 Mar;6(3):836-43. doi: 10.1021/bi00855a025.
3
Lincomycin, an inhibitor of aminoacyl sRNA binding to ribosomes.
Proc Natl Acad Sci U S A. 1966 Feb;55(2):431-8. doi: 10.1073/pnas.55.2.431.
9
Erythromycin-inducible resistance in Staphylococcus aureus: requirements for induction.
J Bacteriol. 1971 Jun;106(3):835-47. doi: 10.1128/jb.106.3.835-847.1971.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验