Suppr超能文献

金黄色葡萄球菌中高亲和力甘氨酸甜菜碱转运系统的鉴定

Identification of a high-affinity glycine betaine transport system in Staphylococcus aureus.

作者信息

Bae J H, Anderson S H, Miller K J

机构信息

Department of Food Science, Pennsylvania State University, University Park 16802.

出版信息

Appl Environ Microbiol. 1993 Aug;59(8):2734-6. doi: 10.1128/aem.59.8.2734-2736.1993.

Abstract

Staphylococcus aureus accumulates proline and glycine betaine when cells are grown at low water activity. In the present study, we have identified a high-affinity glycine betaine transport system in this bacterium. Optimal activity for this transport system was measured in the presence of high NaCl concentrations, but transport activity was not stimulated by high concentrations of other solutes.

摘要

当金黄色葡萄球菌在低水分活度条件下生长时,会积累脯氨酸和甘氨酸甜菜碱。在本研究中,我们在这种细菌中鉴定出了一种高亲和力的甘氨酸甜菜碱转运系统。该转运系统的最佳活性是在高NaCl浓度存在的情况下测定的,但高浓度的其他溶质不会刺激其转运活性。

相似文献

1
Identification of a high-affinity glycine betaine transport system in Staphylococcus aureus.
Appl Environ Microbiol. 1993 Aug;59(8):2734-6. doi: 10.1128/aem.59.8.2734-2736.1993.
2
Proline betaine is a highly effective osmoprotectant for Staphylococcus aureus.
Arch Microbiol. 1995 Feb;163(2):138-42. doi: 10.1007/BF00381788.
3
Transport of glycine-betaine by Listeria monocytogenes.
Arch Microbiol. 1994;162(3):205-10. doi: 10.1007/BF00314476.
6
Identification of two proline transport systems in Staphylococcus aureus and their possible roles in osmoregulation.
Appl Environ Microbiol. 1992 Feb;58(2):471-5. doi: 10.1128/aem.58.2.471-475.1992.
7
Glycine betaine transport in Escherichia coli: osmotic modulation.
J Bacteriol. 1985 Jan;161(1):393-401. doi: 10.1128/jb.161.1.393-401.1985.
9
Evidence for feedback (trans) regulation of, and two systems for, glycine betaine transport by Staphylococcus aureus.
Microbiology (Reading). 1994 Nov;140 ( Pt 11):3139-44. doi: 10.1099/13500872-140-11-3139.
10
Glycine betaine transport by Staphylococcus aureus: evidence for feedback regulation of the activity of the two transport systems.
Microbiology (Reading). 1994 Nov;140 ( Pt 11):3131-8. doi: 10.1099/13500872-140-11-3131.

引用本文的文献

1
mSphere of Influence: Metabolic redundancies enhance pathogenesis.
mSphere. 2024 Jul 30;9(7):e0023924. doi: 10.1128/msphere.00239-24. Epub 2024 Jul 3.
2
Osmolyte transport in and the role in pathogenesis.
World J Clin Infect Dis. 2016;6(2):22-27. doi: 10.5495/wjcid.v6.i2.22. Epub 2016 May 25.
3
Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus.
Acta Crystallogr D Biol Crystallogr. 2015 May;71(Pt 5):1159-75. doi: 10.1107/S1399004715004228. Epub 2015 Apr 25.
5
Synthesis of pyruvate dehydrogenase in Staphylococcus aureus is stimulated by osmotic stress.
Appl Environ Microbiol. 2002 May;68(5):2353-8. doi: 10.1128/AEM.68.5.2353-2358.2002.
6
Glycine betaine transport in the obligate halophilic archaeon Methanohalophilus portucalensis.
J Bacteriol. 2000 Sep;182(17):5020-4. doi: 10.1128/JB.182.17.5020-5024.2000.
9
Sodium-driven, osmotically activated glycine betaine transport in Listeria monocytogenes membrane vesicles.
J Bacteriol. 1996 Nov;178(21):6105-9. doi: 10.1128/jb.178.21.6105-6109.1996.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验