Saxton M J
Institute of Theoretical Dynamics, University of California, Davis 95616.
Biophys J. 1993 Apr;64(4):1053-62. doi: 10.1016/S0006-3495(93)81471-1.
In a pure fluid-phase lipid, the dependence of the lateral diffusion coefficient on the size of the diffusing particle may be obtained from the Saffman-Delbrück equation or the free-volume model. When diffusion is obstructed by immobile proteins or domains of gel-phase lipids, the obstacles yield an additional contribution to the size dependence. Here this contribution is examined using Monte Carlo calculations. For random point and hexagonal obstacles, the diffusion coefficient depends strongly on the size of the diffusing particle, but for fractal obstacles--cluster-cluster aggregates and multicenter diffusion-limited aggregates--the diffusion coefficient is independent of the size of the diffusing particle. The reason is that fractals have no characteristic length scale, so a tracer sees on average the same obstructions, regardless of its size. The fractal geometry of the excluded area for tracers of various sizes is examined. Percolation thresholds are evaluated for a variety of obstacles to determine how the threshold depends on tracer size and to compare the thresholds for compact and extended obstacles.
在纯液相脂质中,横向扩散系数对扩散粒子大小的依赖性可从萨夫曼 - 德尔布吕克方程或自由体积模型得出。当扩散受到固定蛋白质或凝胶相脂质区域的阻碍时,这些障碍物会对大小依赖性产生额外影响。在此,使用蒙特卡罗计算来研究这种影响。对于随机点障碍物和六边形障碍物,扩散系数强烈依赖于扩散粒子的大小,但对于分形障碍物——簇 - 簇聚集体和多中心扩散限制聚集体——扩散系数与扩散粒子的大小无关。原因是分形没有特征长度尺度,所以无论示踪剂大小如何,平均而言它看到的障碍物是相同的。研究了不同大小示踪剂排除区域的分形几何结构。评估了各种障碍物的渗流阈值,以确定阈值如何依赖于示踪剂大小,并比较致密障碍物和扩展障碍物的阈值。