Antosiewicz J
Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla 92093-0365, USA.
Biophys J. 1995 Oct;69(4):1344-54. doi: 10.1016/S0006-3495(95)80001-9.
A simple and computationally feasible procedure for the calculation of net charges and dipole moments of proteins at arbitrary pH and salt conditions is described. The method is intended to provide data that may be compared to the results of transient electric dichroism experiments on protein solutions. The procedure consists of three major steps: (i) calculation of self energies and interaction energies for ionizable groups in the protein by using the finite-difference Poisson-Boltzmann method, (ii) determination of the position of the center of diffusion (to which the calculated dipole moment refers) and the extinction coefficient tensor for the protein, and (iii) generation of the equilibrium distribution of protonation states of the protein by a Monte Carlo procedure, from which mean and root-mean-square dipole moments and optical anisotropies are calculated. The procedure is applied to 12 proteins. It is shown that it gives hydrodynamic and electrical parameters for proteins in good agreement with experimental data.
本文描述了一种在任意pH值和盐浓度条件下计算蛋白质净电荷和偶极矩的简单且计算可行的方法。该方法旨在提供可与蛋白质溶液瞬态电二色性实验结果相比较的数据。该过程包括三个主要步骤:(i) 使用有限差分泊松-玻尔兹曼方法计算蛋白质中可电离基团的自能和相互作用能;(ii) 确定扩散中心的位置(计算得到的偶极矩即指该位置)以及蛋白质的消光系数张量;(iii) 通过蒙特卡罗方法生成蛋白质质子化状态的平衡分布,由此计算平均和均方根偶极矩以及光学各向异性。该方法应用于12种蛋白质。结果表明,该方法给出的蛋白质流体动力学和电学参数与实验数据吻合良好。