Arnold J H, Thompson J E, Arnold L W
Department of Anesthesia, Children's Hospital, Boston, MA 02115, USA.
Crit Care Med. 1996 Jan;24(1):96-102. doi: 10.1097/00003246-199601000-00017.
To evaluate the performance of a newly developed single breath CO2 analysis station in measuring the airway deadspace in a lung model (study 1), and then to quantify the bias and precision of the physiologic deadspace measurement in a surfactant-depleted animal model (study 2).
A prospective bench validation of a new technique of airway deadspace measurement using a criterion standard (study 1); a prospective, animal cohort study comparing a new technique of physiologic deadspace measurement with a reference method (Bohr-Enghoff method) (study 2).
A bench laboratory and animal laboratory in a university-affiliated medical center.
A lung model (study 1), and adult sheep with induced surfactant deficiency (saline lavage) (study 2).
The single breath CO2 analysis station consists of a mainstream capnometer, a variable orifice pneumotachometer, a signal processor, and computer software with capability for both on- and off-line data analysis. Study 1: We evaluated the accuracy of the airway deadspace calculation using a plexiglass lung model. The capnometer and pneumotachometer were placed at the ventilator Y-piece with polyvinyl chloride tubing added to simulate increased airway deadspace. Segments of tubing were sequentially removed during each testing session to simulate decreasing deadspace. The calculated airway deadspace was derived from the single breath CO2 plot and compared with the actual tubing volume using least-squares linear regression and paired t-tests. Study 2: The accuracy of the physiologic deadspace measurement was examined in a saline-lavaged animal model by comparing the physiologic deadspace calculated from the single breath CO2 analysis station with values obtained using the Enghoff modification of the Bohr equation: deadspace/tidal volume ratio = (PaCO2-mixed expired PCO2)/PaCO2.
Study 1: Thirty-six measurements of calculated airway deadspace were made and compared with actual circuit deadspace during four different testing conditions. Measured airway deadspace correlated significantly with actual circuit deadspace (r2 = .99). The proportional error of the method was -0.8% with a 95% confidence interval from -3.6% to 1.9%. Study 2: A total of 27 pairs of measurements in four different animals were available for analysis. The derived physiologic deadspace/tidal volume ratio significantly correlated with the value obtained using the Bohr-Enghoff method (r2 = .84). The bias and precision of our physiologic deadspace calculation were .02 and .02, respectively, and the mean percent difference for the physiologic deadspace calculated from the single breath CO2 analysis station was 2.4%.
Our initial experience with the single breath CO2 analysis station indicates that this device can reliably provide on-line evaluation of the single-breath CO2 waveform. In particular, estimation of the airway and physiologic deadspace under a variety of testing conditions was consistently within 5% of actual values. We feel that with further application and refinement of the technique, single breath CO2 analysis may provide a noninvasive, on-line monitor of changes in pulmonary blood flow.
评估新开发的单次呼吸二氧化碳分析站在肺模型中测量气道死腔的性能(研究1),然后量化表面活性剂缺乏动物模型中生理死腔测量的偏差和精密度(研究2)。
使用标准方法对气道死腔测量新技术进行前瞻性实验台验证(研究1);前瞻性动物队列研究,将生理死腔测量新技术与参考方法(玻尔 - 恩霍夫方法)进行比较(研究2)。
大学附属医学中心的实验台实验室和动物实验室。
一个肺模型(研究1),以及诱导表面活性剂缺乏(盐水灌洗)的成年绵羊(研究2)。
单次呼吸二氧化碳分析站由主流二氧化碳监测仪、可变孔口呼吸流速计、信号处理器以及具备在线和离线数据分析能力的计算机软件组成。研究1:我们使用有机玻璃肺模型评估气道死腔计算的准确性。将二氧化碳监测仪和呼吸流速计放置在呼吸机Y形接头处,并添加聚氯乙烯管以模拟增加的气道死腔。在每个测试过程中依次移除管段以模拟死腔减小。从单次呼吸二氧化碳图中得出计算的气道死腔,并使用最小二乘线性回归和配对t检验与实际管腔体积进行比较。研究2:在盐水灌洗的动物模型中,通过将单次呼吸二氧化碳分析站计算的生理死腔与使用玻尔方程恩霍夫修正法获得的值进行比较,来检查生理死腔测量的准确性:死腔/潮气量比 = (动脉血二氧化碳分压 - 混合呼出二氧化碳分压)/动脉血二氧化碳分压。
研究1:在四种不同测试条件下进行了36次计算气道死腔的测量,并与实际回路死腔进行比较。测量的气道死腔与实际回路死腔显著相关(r2 = 0.99)。该方法的比例误差为 -0.8%,95%置信区间为 -3.6%至1.9%。研究2:共有来自四只不同动物的27对测量数据可供分析。得出的生理死腔/潮气量比与使用玻尔 - 恩霍夫方法获得的值显著相关(r2 = 0.84)。我们的生理死腔计算的偏差和精密度分别为0.02和0.02,并且单次呼吸二氧化碳分析站计算的生理死腔的平均百分比差异为2.4%。
我们对单次呼吸二氧化碳分析站的初步经验表明,该设备能够可靠地提供单次呼吸二氧化碳波形的在线评估。特别是,在各种测试条件下气道和生理死腔的估计始终在实际值的5%以内。我们认为,随着该技术的进一步应用和完善,单次呼吸二氧化碳分析可能会提供一种无创的、在线监测肺血流变化的方法。