Suppr超能文献

氟-19核磁共振研究葡萄糖基氟在人红细胞中的转运。

Fluorine-19 NMR studies of glucosyl fluoride transport in human erythrocytes.

作者信息

London R E, Gabel S A

机构信息

Laboratory of Molecular Biophysics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.

出版信息

Biophys J. 1995 Nov;69(5):1814-8. doi: 10.1016/S0006-3495(95)80051-2.

Abstract

Fluorine-19 magnetization transfer studies have been used to measure the transport rate of glucopyranosyl fluorides under equilibrium exchange conditions. Although rate constants and permeabilities could be determined for beta-D-glucopyranosyl fluoride, the exchange rate for alpha-D-glucopyranosyl fluoride was found to be too slow for determination using this method. The time-dependent decomposition of the beta-glucopyranosyl fluoride also limits the accuracy of the numerical results for this species; however, it is clear that the permeabilities of the alpha and beta forms differ significantly, i.e., P beta > P alpha. This observation is in contrast to recent observations for n-fluoro-n-deoxyglucose, for which P alpha > P beta for n = 2, 3, 4, or 6. The difference can be explained in terms of a simple alternating conformation model in which one of the conformations (with an external sugar-binding site) exhibits a preference for the beta form of the molecule, while the second conformation (with an internal sugar binding site) exhibits a preference for the alpha form. Fluorine/hydroxyl substitutions unmask these preferences by selectively reducing the binding to one of the conformations, depending on the specific site of fluorination.

摘要

氟 - 19 磁化转移研究已被用于测量平衡交换条件下吡喃葡萄糖基氟化物的转运速率。尽管可以确定β - D - 吡喃葡萄糖基氟化物的速率常数和渗透率,但发现α - D - 吡喃葡萄糖基氟化物的交换速率太慢,无法用此方法测定。β - 吡喃葡萄糖基氟化物随时间的分解也限制了该物种数值结果的准确性;然而,很明显,α型和β型的渗透率有显著差异,即Pβ > Pα。这一观察结果与最近对n - 氟 - n - 脱氧葡萄糖的观察结果相反,对于n = 2、3、4或6的n - 氟 - n - 脱氧葡萄糖,Pα > Pβ。这种差异可以用一个简单的交替构象模型来解释,其中一种构象(具有外部糖结合位点)对分子的β型表现出偏好,而第二种构象(具有内部糖结合位点)对α型表现出偏好。氟/羟基取代通过根据氟化的特定位点选择性地减少与一种构象的结合来揭示这些偏好。

相似文献

1
Fluorine-19 NMR studies of glucosyl fluoride transport in human erythrocytes.
Biophys J. 1995 Nov;69(5):1814-8. doi: 10.1016/S0006-3495(95)80051-2.
3
Anomeric dependence of fluorodeoxyglucose transport in human erythrocytes.
Biochemistry. 1994 Sep 13;33(36):10985-92. doi: 10.1021/bi00202a018.
4
Inhibition of dextransucrase by alpha-D-glucose derivatives.
Appl Biochem Biotechnol. 1991 Dec;31(3):237-46. doi: 10.1007/BF02921750.
5
Hexose transporter GLUT1 harbors several distinct regulatory binding sites for flavones and tyrphostins.
Biochemistry. 2011 Oct 18;50(41):8834-45. doi: 10.1021/bi200748b. Epub 2011 Sep 27.
6
Human erythrocyte sugar transport is incompatible with available carrier models.
Biochemistry. 1996 Aug 13;35(32):10411-21. doi: 10.1021/bi953077m.
7
Simple model can explain self-inhibition of red cell anion exchange.
Biophys J. 1985 Jan;47(1):15-20. doi: 10.1016/S0006-3495(85)83871-6.
8
Anomeric preference of fluoroglucose exchange across human red-cell membranes. 19F-n.m.r. studies.
Biochem J. 1992 Feb 1;281 ( Pt 3)(Pt 3):753-9. doi: 10.1042/bj2810753.
9
Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
Biochemistry. 1999 May 18;38(20):6640-50. doi: 10.1021/bi990130o.
10
Properties of the human erythrocyte glucose transport protein are determined by cellular context.
Biochemistry. 2005 Apr 19;44(15):5606-16. doi: 10.1021/bi0477541.

引用本文的文献

2
Structure, function and regulation of mammalian glucose transporters of the SLC2 family.
Pflugers Arch. 2020 Sep;472(9):1155-1175. doi: 10.1007/s00424-020-02411-3. Epub 2020 Jun 26.
3
Strategies for the Development of Glycomimetic Drug Candidates.
Pharmaceuticals (Basel). 2019 Apr 11;12(2):55. doi: 10.3390/ph12020055.
4
Transmembrane Exchange of Fluorosugars: Characterization of Red Cell GLUT1 Kinetics Using F NMR.
Biophys J. 2018 Nov 20;115(10):1906-1919. doi: 10.1016/j.bpj.2018.09.030. Epub 2018 Oct 5.
6
Glucose conjugation for the specific targeting and treatment of cancer.
Chem Sci. 2013 Jun;4(6):2319-2333. doi: 10.1039/C3SC22205E.
7
alpha- and beta-monosaccharide transport in human erythrocytes.
Am J Physiol Cell Physiol. 2009 Jan;296(1):C151-61. doi: 10.1152/ajpcell.00359.2008. Epub 2008 Nov 5.

本文引用的文献

1
Anomeric dependence of fluorodeoxyglucose transport in human erythrocytes.
Biochemistry. 1994 Sep 13;33(36):10985-92. doi: 10.1021/bi00202a018.
2
The effect of the unstirred layer on human red cell water permeability.
J Gen Physiol. 1967 May;50(5):1377-99. doi: 10.1085/jgp.50.5.1377.
4
The glucose transporter of mammalian cells.
Annu Rev Physiol. 1985;47:503-17. doi: 10.1146/annurev.ph.47.030185.002443.
5
The dynamics of the glucose transporter.
Trends Biochem Sci. 1988 Jun;13(6):226-31. doi: 10.1016/0968-0004(88)90089-8.
9
NMR methods for measuring membrane transport rates.
NMR Biomed. 1990 Feb;3(1):1-16. doi: 10.1002/nbm.1940030102.
10
The interaction of 1-fluoro-D-glucopyranosyl fluoride with glucosidases.
Biochem J. 1991 Oct 15;279 ( Pt 2)(Pt 2):587-93. doi: 10.1042/bj2790587.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验