Suppr超能文献

细菌视紫红质的内部分子运动:使用取向紫色膜通过准弹性非相干中子散射研究水合诱导的柔韧性

Internal molecular motions of bacteriorhodopsin: hydration-induced flexibility studied by quasielastic incoherent neutron scattering using oriented purple membranes.

作者信息

Fitter J, Lechner R E, Buldt G, Dencher N A

机构信息

Hahn-Meitner-Institut, Berlin Neutron Scattering Center, Germany.

出版信息

Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7600-5. doi: 10.1073/pnas.93.15.7600.

Abstract

Quasielastic incoherent neutron scattering from hydrogen atoms, which are distributed nearly homogeneously in biological molecules, allows the investigation of diffusive motions occurring on the pico- to nanosecond time scale. A quasielastic incoherent neutron scattering study was performed on the integral membrane protein bacteriorhodopsin (BR), which is a light-driven proton pump in Halobacterium salinarium. BR is embedded in lipids, forming patches in the cell membrane of the organism, which are the so called purple membranes (PMs). Measurements were carried out at room temperature on oriented PM-stacks hydrated at two different levels (low hydration, h = 0.03 g of D2O per g of PM; high hydration, h = 0.28 g of D2O per g of PM) using time-of-flight spectrometers. From the measured spectra, different diffusive components were identified and analyzed with respect to the influence of hydration. This study supports the idea that a decrease in hydration results in an appreciable decrease in internal molecular flexibility of the protein structure. Because it is known from studies on the function of BR that the pump activity is reduced if the hydration level of the protein is insufficient, we conclude that the observed diffusive motions are essential for the function of this protein. A detailed analysis and classification of the different kinds of diffusive motions, predominantly occurring in PMs under physiological conditions, is presented.

摘要

氢原子在生物分子中近乎均匀分布,对其进行准弹性非相干中子散射,能够研究皮秒到纳秒时间尺度上发生的扩散运动。对整合膜蛋白细菌视紫红质(BR)进行了准弹性非相干中子散射研究,BR是盐生盐杆菌中的一种光驱动质子泵。BR嵌入脂质中,在该生物体的细胞膜中形成斑块,即所谓的紫膜(PMs)。使用飞行时间光谱仪在室温下对处于两种不同水合水平(低水合,h = 每克PM含0.03克D2O;高水合,h = 每克PM含0.28克D2O)的取向PM堆叠体进行测量。从测量光谱中,识别出不同的扩散成分,并就水合作用的影响进行了分析。这项研究支持了这样一种观点,即水合作用的降低会导致蛋白质结构内部分子柔韧性显著下降。因为从对BR功能的研究中可知,如果蛋白质的水合水平不足,泵活性就会降低,所以我们得出结论,观察到的扩散运动对该蛋白质的功能至关重要。本文对主要在生理条件下PMs中发生的不同类型扩散运动进行了详细分析和分类。

相似文献

5
Picosecond molecular motions in bacteriorhodopsin from neutron scattering.
Biophys J. 1997 Oct;73(4):2126-37. doi: 10.1016/S0006-3495(97)78243-2.
8
Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering.
Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4970-5. doi: 10.1073/pnas.95.9.4970.
9
Dynamical heterogeneity of specific amino acids in bacteriorhodopsin.
J Mol Biol. 2008 Jul 11;380(3):581-91. doi: 10.1016/j.jmb.2008.04.077. Epub 2008 May 11.

引用本文的文献

2
Anomalous water dynamics in brain: a combined diffusion magnetic resonance imaging and neutron scattering investigation.
J R Soc Interface. 2019 Aug 30;16(157):20190186. doi: 10.1098/rsif.2019.0186. Epub 2019 Aug 14.
4
Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor.
Biophys J. 2016 Sep 20;111(6):1180-1191. doi: 10.1016/j.bpj.2016.08.002.
6
On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons.
Soft Matter. 2015 Dec 21;11(47):9055-72. doi: 10.1039/c5sm01807b.
7
Thermal fluctuations in amphipol A8-35 particles: a neutron scattering and molecular dynamics study.
J Membr Biol. 2014 Oct;247(9-10):897-908. doi: 10.1007/s00232-014-9725-1. Epub 2014 Sep 10.
8
Internal motions of actin characterized by quasielastic neutron scattering.
Eur Biophys J. 2011 May;40(5):661-71. doi: 10.1007/s00249-011-0669-4. Epub 2011 Jan 20.
9
Macromolecular dynamics in red blood cells investigated using neutron spectroscopy.
J R Soc Interface. 2011 Apr 6;8(57):590-600. doi: 10.1098/rsif.2010.0306. Epub 2010 Aug 25.
10
Protein dynamics investigated by neutron scattering.
Photosynth Res. 2009 Nov-Dec;102(2-3):281-93. doi: 10.1007/s11120-009-9480-9. Epub 2009 Sep 11.

本文引用的文献

2
Protein hydration elucidated by molecular dynamics simulation.
Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9135-9. doi: 10.1073/pnas.90.19.9135.
3
Molecular dynamics simulations of an enzyme surrounded by vacuum, water, or a hydrophobic solvent.
Biophys J. 1994 Aug;67(2):548-59. doi: 10.1016/S0006-3495(94)80515-6.
4
Dynamics of hydrogen atoms in superoxide dismutase by quasielastic neutron scattering.
Biophys J. 1995 Jun;68(6):2519-23. doi: 10.1016/S0006-3495(95)80434-0.
6
Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals.
J Mol Biol. 1982 Oct 15;161(1):177-94. doi: 10.1016/0022-2836(82)90285-6.
7
Intramolecular low-frequency vibrations in lysozyme by neutron time-of-flight spectroscopy.
Biopolymers. 1982 Jan;21(1):43-50. doi: 10.1002/bip.360210105.
9
Biophysical applications of quasi-elastic and inelastic neutron scattering.
Annu Rev Biophys Bioeng. 1984;13:425-51. doi: 10.1146/annurev.bb.13.060184.002233.
10
Photoelectric signals from dried oriented purple membranes of Halobacterium halobium.
Biophys J. 1983 Jul;43(1):47-51. doi: 10.1016/S0006-3495(83)84322-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验