Chuang J S, Schekman R W
Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA.
J Cell Biol. 1996 Nov;135(3):597-610. doi: 10.1083/jcb.135.3.597.
The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small-budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4, indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal-Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988, Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336). Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived. Collectively, these data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis; Chs3p is not delivered to the vacuole, but instead may be recycled.
多糖几丁质在酿酒酵母细胞壁中的沉积受到时间和空间的调控。几丁质合酶III(Chs3p)在芽出现开始时合成一圈几丁质,标志着初始芽的基部。在有丝分裂末期,几丁质合酶II(Chs2p)在母细胞 - 芽颈处沉积一片几丁质,形成初级分裂隔膜。通过间接免疫荧光显微镜观察,我们发现这两种整合膜蛋白在细胞周期的不同时间定位于母细胞 - 芽颈处。Chs2p在有丝分裂末期出现在颈部,而Chs3p定位于即将经历芽出现的细胞表面的一个环以及小芽细胞的母细胞 - 芽颈处。细胞同步化和脉冲追踪实验表明,Chs2p定位的时间是由细胞周期特异性合成与快速降解共同导致的。Chs2p的降解依赖于由PEP4编码的液泡蛋白酶,这表明Chs2p在液泡中被破坏。阻断晚期分泌途径(sec1 - 1)或内吞作用内化步骤(end4 - 1)的温度敏感突变也会阻止Chs2p的降解。相反,Chs3p是组成型合成且代谢稳定的,这表明Chs2p和Chs3p受到不同的调控模式。差速离心实验表明,相当一部分Chs3p存在于一个内部区室中,这个区室可能对应于一种称为几丁质体的囊泡类型(Leal - Morales, C.A., C.E. Bracker, and S. Bartnicki - Garcia. 1988, Proc. Natl. Acad. Sci. USA. 85:8516 - 8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328 - 336)。对内化缺陷突变体(end3 - 1和end4 - 1)制备的膜进行分级分离表明,含有Chs3p的囊泡是内吞来源的。总的来说,这些数据表明Chs2p和Chs3p在内吞作用后运输途径不同;Chs3p不会被运送到液泡,而是可能被回收利用。