Suppr超能文献

[不同输液和血液加温方法的比较效果]

[The comparative effectiveness of different infusion and blood warming methods].

作者信息

Schmidt J H, Weyland W, Fritz U, Bräuer A, Rathgeber J, Braun U

机构信息

Zentrum Anaesthesiologie, Rettungs- und Intensivmedizin, Georg-August-Universität Göttingen.

出版信息

Anaesthesist. 1996 Nov;45(11):1067-74. doi: 10.1007/s001010050341.

Abstract

UNLABELLED

Heat loses during surgery occur mainly to the environment and due to infusions and irrigations. Infusions given at room temperature account for a great deal of the total heat deficit during major operations, e.g., the infusion of 53 ml/kg 20 degrees C fluid leads to a loss of 1 degree C in mean body temperature. Hence, heating i.v. fluids will add to the effect of other measures aimed at reducing heat loss to the environment. We investigated the efficacy of different warming methods for i.v. fluids in an experimental model by measuring the temperature at the end of the delivery line.

METHODS

The following in-line warmers were studied: Hotline HL-90 and System H-250/heat exchanger D-50 (Level 1 Technologies, Marshfield, USA), Astotherm IFT 260 (Stihler Elektronic GmbH, Stuttgart, Germany), RSLB 30 H Gamida (Productions Hospitalieres Francaises, Eaubonne, France), Bair Hugger 241/Modell 500 Prototype (Augustine Medical, Eden Prairie, USA). They were compared with pre-warming infusions (39 degrees C) only using the Clinitherm S (Labor Technik Barkey GmbH, Bielefeld, Germany) and pre-warming with "active insulation" of the delivery line using the Autotherm/Autoline system (Labor Technik Barkey GmbH, Bielefeld, Germany). We investigated the influence of four variables on the efficacy of warming: (1) flow rate (50-15,000 ml/h); (2) ambient temperature (20 degrees C and 25 degrees C); (3) infusion bag temperature (6 degrees C, 20 degrees C, and 39 degrees C); and (4) length of infusion system downstream from the heat exchanger. Fluid temperatures were measured using thermistors of 1 mm diameter (Modell YSI 520, Yellow Springs Instruments Co., Yellow Springs, USA) incorporated into 3-way stopcocks. Temperatures were recorded using Hellige temperature monitors (Hellige GmbH, Freiburg im Breisgau, Germany) and the signals were collected at 10 Hz through an AD converter and averaged over 1 min. Flows were calculated by timed collection into calibrated cylinders; 10 to 12 different flow rates were taken to define one temperature/ flow plot. Effective warming was defined as a temperature > 33 degrees C at the end of the infusion line.

RESULTS

At high flow rates (> 2,500 ml/h) using 20 degrees C fluids at 20 degrees C ambient temperature, the H-250/D-50 system gave the highest temperatures throughout the range and showed effective warming from 1,300 ml/h on over the entire range tested (35 degrees C at 17,000 ml/h) compared to the RSLB 30 H Gamida system (3,000-18,000 ml/h) (Fig. 2). This difference in performance was almost abolished with fluids at 6 degrees C (Fig. 4). Similar efficacy could be reached by using prewarmed infusions that gave effective warming at > 2,000 ml/h and reached 39 degrees C at 13,000 ml/h. Prewarmed infusions could be used effectively down to > 80 ml/h applying "active insulation" (Autotherm/Autoline) to the whole infusion system. The Hotline HL-90 (50-4, 700 ml/h) appeared to be the most effective in-line warmer in the low (< 250 ml/h) and middle (250-2,500 ml/h) flow range, followed by the Astotherm IFT 260 (400-4,000 ml/h), but only if used with a length of 40 cm down-stream from the heat exchanger (Fig. 1). Increasing this distance to 145 cm markedly reduced its efficacy below the range of 2,000 ml/min (1,200- 3,000 ml/h) (Fig. 5). The Bair Hugger 241 Prototype showed a narrow effective range (700-1,300 ml/h) that could be extended beyond 1,300 ml/h by the use of prewarmed infusions (Figs. 1 and 3). The performance for 6 degrees C solutions and ambient temperatures of 25 degrees C are given in Fig. 4 and Table 1.

CONCLUSIONS

The importance of infusion warming increases with the amount of fluid given.(ABSTRACT TRUNCATED)

摘要

未加标注

手术过程中的热量散失主要发生于周围环境以及输液和冲洗过程。室温下输入的液体在大型手术中占总热量缺失的很大一部分,例如,输入53毫升/千克20摄氏度的液体可导致平均体温下降1摄氏度。因此,加热静脉输液将增强其他旨在减少向周围环境散热措施的效果。我们通过测量输液管末端的温度,在一个实验模型中研究了不同静脉输液加温方法的效果。

方法

研究了以下几种在线加温器:Hotline HL - 90和System H - 250/热交换器D - 50(美国马什菲尔德的Level 1 Technologies公司)、Astotherm IFT 260(德国斯图加特的Stihler Elektronic GmbH公司)、RSLB 30 H Gamida(法国埃博讷的Productions Hospitalieres Francaises公司)、Bair Hugger 241/型号500原型机(美国伊甸草原的Augustine Medical公司)。将它们与仅使用Clinitherm S(德国比勒费尔德的Labor Technik Barkey GmbH公司)进行输液预加温(39摄氏度)以及使用Autotherm/Autoline系统(德国比勒费尔德的Labor Technik Barkey GmbH公司)对输液管进行“主动保温”的预加温方法进行比较。我们研究了四个变量对加温效果的影响:(1)流速(50 - 15,000毫升/小时);(2)环境温度(20摄氏度和25摄氏度);(3)输液袋温度(6摄氏度、20摄氏度和39摄氏度);(4)热交换器下游输液系统的长度。使用直径为1毫米的热敏电阻(美国黄泉的型号YSI 520,黄泉仪器公司)插入三通旋塞来测量液体温度。使用Hellige温度监测仪(德国布赖斯高地区弗赖堡的Hellige GmbH公司)记录温度,并通过AD转换器以10赫兹的频率采集信号,1分钟内求平均值。通过定时收集到校准量筒中来计算流量;取10至12种不同的流速来确定一个温度/流量图。有效加温定义为输液管末端温度>33摄氏度。

结果

在20摄氏度环境温度下使用20摄氏度的液体且流速较高(>2,500毫升/小时)时,H - 250/D - 50系统在整个测试范围内温度最高,并且在整个测试范围内(17,000毫升/小时时为35摄氏度)从1,300毫升/小时起显示出有效加温,相比之下RSLB 30 H Gamida系统(3,000 - 18,000毫升/小时)(图2)。当使用6摄氏度的液体时,这种性能差异几乎消失(图4)。使用预加温输液在流速>2,000毫升/小时时可实现有效加温,在13,000毫升/小时时达到39摄氏度,通过对整个输液系统应用“主动保温”(Autotherm/Autoline),预加温输液在流速低至>80毫升/小时时仍可有效使用。Hotline HL - 90(50 - 4,700毫升/小时)在低流速(<250毫升/小时)和中等流速(250 - 2,500毫升/小时)范围内似乎是最有效的在线加温器,其次是Astotherm IFT 260(400 - 4,000毫升/小时)但前提是在热交换器下游使用长度为40厘米的输液管(图1)。将此距离增加到145厘米会在流速低于2,000毫升/分钟(1,200 - 3,000毫升/小时)的范围内显著降低其效果(图5)。Bair Hugger 241原型机显示出较窄的有效范围(700 - 1,300毫升/小时),通过使用预加温输液可将其扩展到超过1,300毫升/小时(图1和图3)。图4和表1给出了6摄氏度溶液和25摄氏度环境温度下的性能。

结论

输液加温的重要性随着输液量的增加而增加。(摘要截选)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验