Suppr超能文献

在酿酒酵母中沉默MIG1:反义MIG1表达和MIG1基因破坏的影响。

Silencing MIG1 in Saccharomyces cerevisiae: effects of antisense MIG1 expression and MIG1 gene disruption.

作者信息

Olsson L, Larsen M E, Rønnow B, Mikkelsen J D, Nielsen J

机构信息

Department of Biotechnology, Technical University of Denmark, Lyngby, Denmark.

出版信息

Appl Environ Microbiol. 1997 Jun;63(6):2366-71. doi: 10.1128/aem.63.6.2366-2371.1997.

Abstract

Silencing of MIG1, a transcription factor imposing carbon catabolite repression on invertase, was attempted, either by disrupting the gene or by expressing antisense copies of the gene. The performance of the recombinant strains in bioreactor batch cultivations on sucrose, in the presence of glucose, was compared with that of the wild-type strain under the same conditions. In the delta migI strain, the rate of sucrose utilization was independent (10 mmol/g/h) of the glucose concentration. During the cultivations with the wild-type strain and the antisense strains, two distinct phases were observed. The rates of sucrose hydrolysis were < 1 mmol/g/h and 9 to 10 mmol/g/h in the first and second phases, respectively. Entry into the second cultivation phase was characterized by a decline in glucose concentration below 12 mmol/liter. As expected, disruption of MIG1 resulted in a relief of glucose repression. However, silencing of MIG1 expression was not achieved by expressing antisense MIG1, even though antisense MIG1 RNA was sufficiently stable to be detected. In the wild-type and delta migI strains, the specific growth rate was 0.32 to 0.33 h-1, whereas it was lower in the antisense strains, 0.25 to 0.30 h-1.

摘要

尝试通过破坏基因或表达该基因的反义拷贝来沉默MIG1(一种对转化酶施加碳分解代谢物阻遏作用的转录因子)。在相同条件下,将重组菌株在有葡萄糖存在的情况下于生物反应器分批培养中利用蔗糖的性能与野生型菌株进行了比较。在缺失migI基因的菌株中,蔗糖利用速率与葡萄糖浓度无关(10 mmol/g/h)。在用野生型菌株和反义菌株进行培养的过程中,观察到了两个不同的阶段。在第一阶段和第二阶段,蔗糖水解速率分别<1 mmol/g/h和9至10 mmol/g/h。进入第二培养阶段的特征是葡萄糖浓度降至12 mmol/L以下。正如预期的那样,MIG1的破坏导致葡萄糖阻遏的解除。然而,即使反义MIG1 RNA足够稳定可被检测到,通过表达反义MIG1也未实现MIG1表达的沉默。在野生型和缺失migI基因的菌株中,比生长速率为0.32至0.33 h-1,而在反义菌株中较低,为0.25至0.30 h-1。

相似文献

1
Silencing MIG1 in Saccharomyces cerevisiae: effects of antisense MIG1 expression and MIG1 gene disruption.
Appl Environ Microbiol. 1997 Jun;63(6):2366-71. doi: 10.1128/aem.63.6.2366-2371.1997.
2
Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae.
Appl Environ Microbiol. 1996 Dec;62(12):4441-9. doi: 10.1128/aem.62.12.4441-4449.1996.
3
Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site.
Yeast. 1998 Aug;14(11):985-1000. doi: 10.1002/(SICI)1097-0061(199808)14:11<985::AID-YEA294>3.0.CO;2-C.
4
Functional analysis of Mig1 and Rag5 as expressional regulators in thermotolerant yeast Kluyveromyces marxianus.
Appl Microbiol Biotechnol. 2019 Jan;103(1):395-410. doi: 10.1007/s00253-018-9462-y. Epub 2018 Nov 5.
5
Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2004 Feb;63(5):578-83. doi: 10.1007/s00253-003-1408-2. Epub 2003 Aug 19.
7
Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae.
J Biotechnol. 1999 Feb 19;68(2-3):197-212. doi: 10.1016/s0168-1656(98)00205-3.
8
MIG1 overexpression causes flocculation in Saccharomyces cerevisiae.
Microbiology (Reading). 1996 Sep;142 ( Pt 9):2663-7. doi: 10.1099/00221287-142-9-2663.
10
[Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
Sheng Wu Gong Cheng Xue Bao. 2018 Jan 25;34(1):54-67. doi: 10.13345/j.cjb.170098.

引用本文的文献

2
Calorie restriction hysteretically primes aging Saccharomyces cerevisiae toward more effective oxidative metabolism.
PLoS One. 2013;8(2):e56388. doi: 10.1371/journal.pone.0056388. Epub 2013 Feb 11.
3
Metabolic engineering of Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2000 Mar;64(1):34-50. doi: 10.1128/MMBR.64.1.34-50.2000.

本文引用的文献

1
Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression.
Mol Cell Biol. 1996 Sep;16(9):4790-7. doi: 10.1128/MCB.16.9.4790.
5
Antisense gene expression in yeast.
Biol Chem Hoppe Seyler. 1994 Nov;375(11):721-9. doi: 10.1515/bchm3.1994.375.11.721.
6
Uptake of sucrose by Saccharomyces cerevisiae.
Arch Biochem Biophys. 1982 Jul;216(2):652-60. doi: 10.1016/0003-9861(82)90255-7.
8
Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis.
Cell. 1984 May;37(1):67-75. doi: 10.1016/0092-8674(84)90301-5.
9
One-step gene disruption in yeast.
Methods Enzymol. 1983;101:202-11. doi: 10.1016/0076-6879(83)01015-0.
10
Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae.
Mol Cell Biol. 1984 Jul;4(7):1238-45. doi: 10.1128/mcb.4.7.1238-1245.1984.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验