Suppr超能文献

Hemolytic effect of surface roughness of an impeller in a centrifugal blood pump.

作者信息

Takami Y, Nakazawa T, Makinouchi K, Tayama E, Glueck J, Benkowski R, Nosé Y

机构信息

Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.

出版信息

Artif Organs. 1997 Jul;21(7):686-90. doi: 10.1111/j.1525-1594.1997.tb03723.x.

Abstract

The present study investigates how the surface roughness of an impeller affects hemolysis in the pivot bearing supported Gyro C1E3 pump. This study focuses on particular areas of the impeller surface in the impeller type centrifugal pump. Seven Gyro C1E3 pumps were prepared with smooth surface housings and different impeller parts with different surface roughnesses. The vanes, top side, and backside of the impeller were independently subjected to vapor polishing, fine sand blasting, or coarse sand blasting to produce three different grades of surface roughness. These surfaces were then examined by a surface profile instrument. Using these pumps with different impellers, in vitro hemolysis tests were performed simulating cardiopulmonary bypass (5 L/min, 350 mm Hg). The findings of this study conclusively proved that surface roughness of the back side of the impeller has the greatest effect on hemolysis, followed by the top side and then the vanes. The following are reasons for these findings. First, the shear rate may be greater on the back side than on the top side because of the smaller gap between the back and the housing and the greater relative speed against the impeller. Second, the fluid beneath the impeller may have a longer exposure time because there is little chance for the fluid to mix beneath the impeller. Third, the shear rate may be greater on the top side of the impeller than on the vanes because a vortex formation occurs behind the vanes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验