Schütz G J, Schindler H, Schmidt T
Institute for Biophysics, University of Linz, Austria.
Biophys J. 1997 Aug;73(2):1073-80. doi: 10.1016/S0006-3495(97)78139-6.
The lateral mobility of lipids in phospholipid membranes has attracted numerous experimental and theoretical studies, inspired by the model of Singer and Nicholson (1972. Science, 175:720-731) and the theoretical description by Saffman and Delbrück (1975. Proc. Natl. Acad. Sci. USA. 72:3111-3113). Fluorescence recovery after photobleaching (FRAP) is used as the standard experimental technique for the study of lateral mobility, yielding an ensemble-averaged diffusion constant. Single-particle tracking (SPT) and the recently developed single-molecule imaging techniques now give access to data on individual displacements of molecules, which can be used for characterization of the mobility in a membrane. Here we present a new type of analysis for tracking data by making use of the probability distribution of square displacements. The potential of this new type of analysis is shown for single-molecule imaging, which was employed to follow the motion of individual fluorescence-labeled lipids in two systems: a fluid-supported phospholipid membrane and a solid polymerstabilized phospholipid monolayer. In the fluid membrane, a high-mobility component characterized by a diffusion constant of 4.4 microns2/s and a low-mobility component characterized by a diffusion constant of 0.07 micron2/s were identified. It is proposed that the latter characterizes the so-called immobile fraction often found in FRAP experiments. In the polymer-stabilized system, diffusion restricted to corrals of 140 nm was directly visualized. Both examples show the potentials of such detailed analysis in combination with single-molecule techniques: with minimal interference with the native structure, inhomogeneities of membrane mobility can be resolved with a spatial resolution of 100 nm, well below the diffraction limit.
受辛格和尼科尔森(1972年,《科学》,175:720 - 731)模型以及萨夫曼和德尔布吕克(1975年,《美国国家科学院院刊》,72:3111 - 3113)理论描述的启发,磷脂膜中脂质的横向流动性吸引了众多实验和理论研究。光漂白后荧光恢复(FRAP)被用作研究横向流动性的标准实验技术,可得出总体平均扩散常数。单粒子追踪(SPT)以及最近开发的单分子成像技术现在能够获取分子个体位移的数据,这些数据可用于表征膜中的流动性。在此,我们通过利用平方位移的概率分布,提出一种用于追踪数据的新型分析方法。这种新型分析方法的潜力在单分子成像中得到了展示,单分子成像被用于追踪两个系统中单个荧光标记脂质的运动:一个流体支撑的磷脂膜和一个固体聚合物稳定的磷脂单层。在流体膜中,鉴定出了一个以扩散常数4.4微米²/秒为特征的高流动性组分和一个以扩散常数0.07微米²/秒为特征的低流动性组分。有人提出,后者表征了在FRAP实验中经常发现的所谓固定部分。在聚合物稳定系统中,直接观察到扩散被限制在140纳米的围栏内。这两个例子都展示了这种详细分析与单分子技术相结合的潜力:在对天然结构干扰最小的情况下,膜流动性的不均匀性能够以100纳米的空间分辨率得到解析,远低于衍射极限。