Billat V, Renoux J C, Pinoteau J, Petit B, Koralsztein J P
Laboratoire S.T.A.P.S. Université Paris XII, Créteil, France.
Arch Physiol Biochem. 1995 May;103(2):129-35. doi: 10.3109/13813459508996126.
Previous studies had concluded that the treadmill velocity-endurance time hyperbolic relationship for runs could be accuratly approached with a regression at condition that bouts of exercise duration were included between 2 and 12 min. This regression allows to calculate the critical speed (CS) defined as the slope of the regression of work (distance) on time to exhaustion, the anaerobic running capacity (ARC) being the intercept of this line (Monod & Scherrer, 1965). The purpose of this investigation was to give practical indication concerning the choice of the velocities in reference to the maximal aerobic speed (MAS i.e. the minimum speed which elicits VO2max). Subjects were fourteen elite male long-distance runners (27 +/- 3 years old; VO2max = 74.9 +/- 2.9 ml.kg-1.min-1, MAS = 22.4 +/- 0.8 km.h-1, CS = 19.3 +/- 0.7 km.h-1 and 86.2 +/- 1.5% MAS). tlim 100 values (321 +/- 83 s) were negatively correlated with MAS (r = -0.538, p < 0.05) and with CS (km.h-1) (r = -0.644, p < 0.01). tlim 90 (1015 +/- 266 s) was positively correlated with CS when expressed in % MAS (r = 0.645, p < 0.01) and not when expressed in km.h-1 (r = -0.095, P > 0.05). tlim 105 (176 +/- 40 s) only was correlated with ARC (r = 0.526, p < 0.05). These data demonstrate that running time to exhaustion at 100 and 105% of MAS in a homogeneous elite male long-distance runners group is inversely related to MAS. Moreover, tlim 90 is positively correlated with CS (%MAS) but neither with tlim 100 and 105 nor with maximal aerobic speed. So from a practical point of view, the velocities chosen to determine the critical speed, would be closed to the maximal aerobic speed (time to exhaustion around 6 min), taking into account that the tlim 105 is correlated with the anaerobic capacity, whereas tlim 90 is correlated with the critical speed.
先前的研究得出结论,在包含2至12分钟运动时长的条件下,跑步时跑步机速度与耐力时间的双曲线关系可以通过回归分析准确逼近。这种回归分析可以计算临界速度(CS),其定义为工作(距离)对力竭时间的回归斜率,无氧跑步能力(ARC)则是这条线的截距(莫诺德和谢勒,1965年)。本研究的目的是就参考最大有氧速度(MAS,即引发最大摄氧量的最低速度)来选择速度给出实际指导。受试者为14名精英男性长跑运动员(27±3岁;最大摄氧量=74.9±2.9毫升·千克⁻¹·分钟⁻¹,MAS=22.4±0.8千米·小时⁻¹,CS=19.3±0.7千米·小时⁻¹,为MAS的86.2±1.5%)。100%MAS时的力竭时间(tlim 100,321±83秒)与MAS呈负相关(r=-0.538,p<0.05),与CS(千米·小时⁻¹)也呈负相关(r=-0.644,p<0.01)。90%MAS时的力竭时间(tlim 90,1015±266秒)以%MAS表示时与CS呈正相关(r=0.645,p<0.01),而以千米·小时⁻¹表示时则无相关性(r=-0.095,P>0.05)。仅105%MAS时的力竭时间(tlim 105,176±40秒)与ARC相关(r=0.526,p<0.05)。这些数据表明,在一组同质的精英男性长跑运动员中,以100%和105%MAS跑步至力竭的时间与MAS呈负相关。此外,tlim 90与CS(%MAS)呈正相关,但与tlim 100和105以及最大有氧速度均无相关性。所以从实际角度来看,考虑到tlim 105与无氧能力相关,而tlim 90与临界速度相关,选择用于确定临界速度的速度应接近最大有氧速度(力竭时间约为6分钟)。