Suppr超能文献

一种合成离子通道的分子动力学模拟

Molecular dynamics simulation of a synthetic ion channel.

作者信息

Zhong Q, Jiang Q, Moore P B, Newns D M, Klein M L

机构信息

Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, Philadelphia 19104-6323, USA.

出版信息

Biophys J. 1998 Jan;74(1):3-10. doi: 10.1016/S0006-3495(98)77761-6.

Abstract

A molecular dynamics simulation has been performed on a synthetic membrane-spanning ion channel, consisting of four alpha-helical peptides, each of which is composed of the amino acids leucine (L) and serine (S), with the sequence Ac-(LSLLLSL)3-CONH2. This four-helix bundle has been shown experimentally to act as a proton-conducting channel in a membrane environment. In the present simulation, the channel was initially assembled as a parallel bundle in the octane portion of a phase-separated water/octane system, which provided a membrane-mimetic environment. An explicit reversible multiple-time-step integrator was used to generate a dynamical trajectory, a few nanoseconds in duration for this composite system on a parallel computer, under ambient conditions. After more than 1 ns, the four helices were found to adopt an associated dimer state with twofold symmetry, which evolved into a coiled-coil tetrameric structure with a left-handed twist. In the coiled-coil state, the polar serine side chains interact to form a layered structure with the core of the bundle filled with H2O. The dipoles of these H2O molecules tended to align opposite the net dipole of the peptide bundle. The calculated dipole relaxation function of the pore H2O molecules exhibits two reorientation times. One is approximately 3.2 ps, and the other is approximately 100 times longer. The diffusion coefficient of the pore H2O is about one-third of the bulk H2O value. The total dipole moment and the inertia tensor of the peptide bundle have been calculated and reveal slow (300 ps) collective oscillatory motions. Our results, which are based on a simple united atom force-field model, suggest that the function of this synthetic ion channel is likely inextricably coupled to its dynamical behavior.

摘要

对一种合成的跨膜离子通道进行了分子动力学模拟,该通道由四个α-螺旋肽组成,每个肽由氨基酸亮氨酸(L)和丝氨酸(S)组成,序列为Ac-(LSLLLSL)3-CONH2。实验表明,这种四螺旋束在膜环境中可作为质子传导通道。在本模拟中,通道最初在相分离的水/辛烷系统的辛烷部分组装成平行束,该系统提供了类似膜的环境。在环境条件下,使用显式可逆多时间步积分器在并行计算机上为这个复合系统生成了持续几纳秒的动力学轨迹。超过1纳秒后,发现四个螺旋形成了具有二重对称性的缔合二聚体状态,然后演变成具有左旋扭曲的卷曲螺旋四聚体结构。在卷曲螺旋状态下,极性丝氨酸侧链相互作用形成层状结构,束的核心充满H2O。这些H2O分子的偶极倾向于与肽束的净偶极相反排列。计算得到的孔H2O分子的偶极弛豫函数表现出两个重取向时间。一个约为3.2皮秒,另一个约长100倍。孔H2O的扩散系数约为本体H2O值的三分之一。已经计算了肽束的总偶极矩和惯性张量,揭示了缓慢(300皮秒)的集体振荡运动。我们基于简单的联合原子力场模型的结果表明,这种合成离子通道的功能可能与其动力学行为紧密相关。

相似文献

1
Molecular dynamics simulation of a synthetic ion channel.
Biophys J. 1998 Jan;74(1):3-10. doi: 10.1016/S0006-3495(98)77761-6.
2
Molecular dynamics of synthetic leucine-serine ion channels in a phospholipid membrane.
Biophys J. 1999 Nov;77(5):2400-10. doi: 10.1016/S0006-3495(99)77077-3.
3
The M2 channel of influenza A virus: a molecular dynamics study.
FEBS Lett. 1998 Sep 4;434(3):265-71. doi: 10.1016/s0014-5793(98)00988-0.
4
Molecular dynamics simulations of water within models of ion channels.
Biophys J. 1996 Apr;70(4):1643-61. doi: 10.1016/S0006-3495(96)79727-8.
6
Molecular dynamics study of the LS3 voltage-gated ion channel.
FEBS Lett. 1998 May 8;427(2):267-70. doi: 10.1016/s0014-5793(98)00304-4.
7
Pores formed by the nicotinic receptor m2delta Peptide: a molecular dynamics simulation study.
Biophys J. 2003 Jan;84(1):14-27. doi: 10.1016/S0006-3495(03)74829-2.
8
An alamethicin channel in a lipid bilayer: molecular dynamics simulations.
Biophys J. 1999 Apr;76(4):1757-69. doi: 10.1016/s0006-3495(99)77337-6.
9
Molecular dynamics simulations of homo-oligomeric bundles embedded within a lipid bilayer.
Biophys J. 2013 Oct 1;105(7):1569-80. doi: 10.1016/j.bpj.2013.07.053.
10
Simulation of the HIV-1 Vpu transmembrane domain as a pentameric bundle.
FEBS Lett. 1998 Jul 17;431(2):143-8. doi: 10.1016/s0014-5793(98)00714-5.

引用本文的文献

1
The interplay of polarizable water and protein in the activation of the M2 channel.
Front Pharmacol. 2025 Sep 2;16:1532697. doi: 10.3389/fphar.2025.1532697. eCollection 2025.
2
Interaction of Arginine-Rich Surfactant-like Peptide Nanotubes with Liposomes.
Biomacromolecules. 2024 Nov 11;25(11):7410-7420. doi: 10.1021/acs.biomac.4c01072. Epub 2024 Oct 29.
3
Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.
Chem Rev. 2020 Sep 23;120(18):10298-10335. doi: 10.1021/acs.chemrev.9b00830. Epub 2020 Aug 25.
4
Capturing Biologically Complex Tissue-Specific Membranes at Different Levels of Compositional Complexity.
J Phys Chem B. 2020 Sep 10;124(36):7819-7829. doi: 10.1021/acs.jpcb.0c03368. Epub 2020 Aug 31.
5
Computer simulations of protein-membrane systems.
Prog Mol Biol Transl Sci. 2020;170:273-403. doi: 10.1016/bs.pmbts.2020.01.001. Epub 2020 Feb 26.
6
protein design, a retrospective.
Q Rev Biophys. 2020 Feb 11;53:e3. doi: 10.1017/S0033583519000131.
7
Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation.
Chem Rev. 2019 May 8;119(9):6086-6161. doi: 10.1021/acs.chemrev.8b00608. Epub 2019 Apr 12.
8
Validity of the Electrodiffusion Model for Calculating Conductance of Simple Ion Channels.
J Phys Chem B. 2017 Apr 20;121(15):3607-3619. doi: 10.1021/acs.jpcb.6b09598. Epub 2016 Dec 12.
9
Molecular dynamics simulations of homo-oligomeric bundles embedded within a lipid bilayer.
Biophys J. 2013 Oct 1;105(7):1569-80. doi: 10.1016/j.bpj.2013.07.053.
10
Molecular dynamics simulations of voltage-gated cation channels: insights on voltage-sensor domain function and modulation.
Front Pharmacol. 2012 May 25;3:97. doi: 10.3389/fphar.2012.00097. eCollection 2012.

本文引用的文献

1
Structure and dynamics of hydronium in the ion channel gramicidin A.
Biophys J. 1996 May;70(5):2043-51. doi: 10.1016/S0006-3495(96)79773-4.
5
Molecular dynamics simulations of water within models of ion channels.
Biophys J. 1996 Apr;70(4):1643-61. doi: 10.1016/S0006-3495(96)79727-8.
6
Nicotinic acetylcholine receptor at 9 A resolution.
J Mol Biol. 1993 Feb 20;229(4):1101-24. doi: 10.1006/jmbi.1993.1107.
8
Seven-helix bundles: molecular modeling via restrained molecular dynamics.
Biophys J. 1995 Apr;68(4):1295-310. doi: 10.1016/S0006-3495(95)80303-6.
9
Three-dimensional location of the main immunogenic region of the acetylcholine receptor.
Neuron. 1995 Aug;15(2):323-31. doi: 10.1016/0896-6273(95)90037-3.
10
Charge selectivity of the designed uncharged peptide ion channel Ac-(LSSLLSL)3-CONH2.
Biophys J. 1995 Apr;68(4):1347-58. doi: 10.1016/S0006-3495(95)80307-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验