Abrams K, Sansó B
Department of Epidemiology and Public Health, University of Leicester, U.K.
Stat Med. 1998 Jan 30;17(2):201-18. doi: 10.1002/(sici)1097-0258(19980130)17:2<201::aid-sim736>3.0.co;2-9.
Whilst meta-analysis is becoming a more commonplace statistical technique, Bayesian inference in meta-analysis requires complex computational techniques to be routinely applied. We consider simple approximations for the first and second moments of the parameters of a Bayesian random effects model for meta-analysis. These computationally inexpensive methods are based on simple analytical formulae that provide an efficient tool for a qualitative analysis and a quick numerical estimation of posterior quantities. They are shown to lead to sensible approximations in two examples of meta-analyses and to be in broad agreement with the more computationally intensive Gibbs sampling.
虽然元分析正成为一种更常见的统计技术,但元分析中的贝叶斯推断需要常规应用复杂的计算技术。我们考虑了元分析中贝叶斯随机效应模型参数的一阶和二阶矩的简单近似方法。这些计算成本低廉的方法基于简单的解析公式,为定性分析和后验量的快速数值估计提供了一种有效工具。在两个元分析示例中,它们被证明能得出合理的近似结果,并且与计算量更大的吉布斯抽样方法基本一致。