Jonczyk P, Nowicka A, Fijałkowska I J, Schaaper R M, Cieśla Z
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
J Bacteriol. 1998 Mar;180(6):1563-6. doi: 10.1128/JB.180.6.1563-1566.1998.
The mechanisms that control the fidelity of DNA replication are being investigated by a number of approaches, including detailed kinetic and structural studies. Important tools in these studies are mutant versions of DNA polymerases that affect the fidelity of DNA replication. It has been suggested that proper interactions within the core of DNA polymerase III (Pol III) of Escherichia coli could be essential for maintaining the optimal fidelity of DNA replication (H. Maki and A. Kornberg, Proc. Natl. Acad. Sci. USA 84:4389-4392, 1987). We have been particularly interested in elucidating the physiological role of the interactions between the DnaE (alpha subunit [possessing DNA polymerase activity]) and DnaQ (epsilon subunit [possessing 3'-->5' exonucleolytic proofreading activity]) proteins. In an attempt to achieve this goal, we have used the Saccharomyces cerevisiae two-hybrid system to analyze specific in vivo protein interactions. In this report, we demonstrate interactions between the DnaE and DnaQ proteins and between the DnaQ and HolE (theta subunit) proteins. We also tested the interactions of the wild-type DnaE and HolE proteins with three well-known mutant forms of DnaQ (MutD5, DnaQ926, and DnaQ49), each of which leads to a strong mutator phenotype. Our results show that the mutD5 and dnaQ926 mutations do not affect the epsilon subunit-alpha subunit and epsilon subunit-theta subunit interactions. However, the dnaQ49 mutation greatly reduces the strength of interaction of the epsilon subunit with both the alpha and the theta subunits. Thus, the mutator phenotype of dnaQ49 may be the result of an altered conformation of the epsilon protein, which leads to altered interactions within the Pol III core.
人们正在通过多种方法研究控制DNA复制保真度的机制,包括详细的动力学和结构研究。这些研究中的重要工具是影响DNA复制保真度的DNA聚合酶突变体。有人提出,大肠杆菌DNA聚合酶III(Pol III)核心内的适当相互作用对于维持DNA复制的最佳保真度可能至关重要(H. Maki和A. Kornberg,《美国国家科学院院刊》84:4389 - 4392,1987)。我们一直特别关注阐明DnaE(α亚基[具有DNA聚合酶活性])和DnaQ(ε亚基[具有3'→5'核酸外切酶校对活性])蛋白之间相互作用的生理作用。为了实现这一目标,我们使用了酿酒酵母双杂交系统来分析特定的体内蛋白质相互作用。在本报告中,我们证明了DnaE和DnaQ蛋白之间以及DnaQ和HolE(θ亚基)蛋白之间的相互作用。我们还测试了野生型DnaE和HolE蛋白与三种著名的DnaQ突变形式(MutD5、DnaQ926和DnaQ49)的相互作用,每一种都会导致强烈的突变表型。我们的结果表明,mutD5和dnaQ926突变不影响ε亚基 - α亚基和ε亚基 - θ亚基之间的相互作用。然而,dnaQ49突变大大降低了ε亚基与α亚基和θ亚基两者相互作用的强度。因此,dnaQ49的突变表型可能是ε蛋白构象改变的结果,这导致了Pol III核心内相互作用的改变。