Suppr超能文献

一氧化氮与细胞色素c氧化酶的氧化双核中心及氧中间体相互作用的一种常见机制。

A common mechanism for the interaction of nitric oxide with the oxidized binuclear centre and oxygen intermediates of cytochrome c oxidase.

作者信息

Torres J, Cooper C E, Wilson M T

机构信息

Department of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ Colchester, Essex, United Kingdom.

出版信息

J Biol Chem. 1998 Apr 10;273(15):8756-66. doi: 10.1074/jbc.273.15.8756.

Abstract

The reactions of nitric oxide (NO) with fully oxidized cytochrome c oxidase (O) and the intermediates P and F have been investigated by optical spectroscopy, using both static and kinetic methods. The reaction of NO with O leads to a rapid (approximately 100 s-1) electron ejection from the binuclear center to cytochrome a and CuA. The reaction with the intermediates P and F leads to the depletion of these species in slower reactions, yielding the fully oxidized enzyme. The fastest optical change, however, takes place within the dead time of the stopped-flow apparatus (approximately 1 ms), and corresponds to the formation of the F intermediate (580 nm) upon reaction of NO with a species that we postulate is at the peroxide oxidation level. This species can be formulated as either Fe5+ = O CuB2+ or Fe4+ = O CuB3+, and it is spectrally distinct from the P intermediate (607 nm). All of these reactions have been rationalized through a mechanism in which NO reacts with CuB2+, generating the nitrosonium species CuB1+ NO+, which upon hydration yields nitrous acid and CuB1+. This is followed by redox equilibration of CuB with Fea/CuA or Fea3 (in which Fea and Fea3 are the iron centers of cytochromes a and a3, respectively). In agreement with this hypothesis, our results indicate that nitrite is rapidly formed within the binuclear center following the addition of NO to the three species tested (O, P, and F). This work suggests that nitrosylation at CuB2+ instead of at Fea32+ is a key event in the fast inhibition of cytochrome c oxidase by NO.

摘要

利用静态和动力学方法,通过光谱学研究了一氧化氮(NO)与完全氧化的细胞色素c氧化酶(O)以及中间体P和F的反应。NO与O的反应导致电子从双核中心快速(约100 s-1)转移至细胞色素a和CuA。与中间体P和F的反应在较慢反应中导致这些物质的消耗,产生完全氧化的酶。然而,最快的光学变化发生在停流装置的死时间内(约1 ms),并且对应于NO与我们假定处于过氧化物氧化水平的一种物质反应时F中间体(580 nm)的形成。该物质可表示为Fe5+ = O CuB2+或Fe4+ = O CuB3+,并且在光谱上与P中间体(607 nm)不同。所有这些反应都通过一种机制得到了合理的解释,即NO与CuB2+反应,生成亚硝鎓物种CuB1+ NO+,其水合后产生亚硝酸和CuB1+。随后是CuB与Fea/CuA或Fea3(其中Fea和Fea3分别是细胞色素a和a3的铁中心)的氧化还原平衡。与该假设一致,我们的结果表明,在向测试的三种物质(O、P和F)中添加NO后,双核中心内会迅速形成亚硝酸盐。这项工作表明,在CuB2+而非Fea氧化态32+处的亚硝基化是NO快速抑制细胞色素c氧化酶的关键事件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验