Suppr超能文献

使用三明治估计量的条件逻辑回归:在一项荟萃分析中的应用。

Conditional logistic regression with sandwich estimators: application to a meta-analysis.

作者信息

Fay M P, Graubard B I, Freedman L S, Midthune D N

机构信息

Biometry Branch, National Cancer Institute, Bethesda, Maryland 20892-7354, USA.

出版信息

Biometrics. 1998 Mar;54(1):195-208.

PMID:9544516
Abstract

Motivated by a meta-analysis of animal experiments on the effect of dietary fat and total caloric intake on mammary tumorigenesis, we explore the use of sandwich estimators of variance with conditional logistic regression. Classical conditional logistic regression assumes that the parameters are fixed effects across all clusters, while the sandwich estimator gives appropriate inferences for either fixed effects or random effects. However, inference using the standard Wald test with the sandwich estimator requires that each parameter is estimated using information from a large number of clusters. Since our example violates this condition, we introduce two modifications to the standard Wald test. First, we reduce the bias of the empirical variance estimator (the middle of the sandwich) by using standardized residuals. Second, we approximately account for the variance of these estimators by using the t-distribution instead of the normal distribution, where the degrees of freedom are estimated using Satterthwaite's approximation. Through simulations, we show that these sandwich estimators perform almost as well as classical estimators when the true effects are fixed and much better than the classical estimators when the true effects are random. We achieve simulated nominal coverage for these sandwich estimators even when some parameters are estimated from a small number of clusters.

摘要

受一项关于饮食脂肪和总热量摄入对乳腺肿瘤发生影响的动物实验的荟萃分析的启发,我们探索了在条件逻辑回归中使用方差的三明治估计量。经典的条件逻辑回归假设参数在所有聚类中是固定效应,而三明治估计量对于固定效应或随机效应都能给出合适的推断。然而,使用带有三明治估计量的标准 Wald 检验进行推断要求每个参数都使用来自大量聚类的信息进行估计。由于我们的示例违反了这个条件,我们对标准 Wald 检验进行了两处修改。首先,我们通过使用标准化残差来减少经验方差估计量(三明治中间部分)的偏差。其次,我们通过使用 t 分布而非正态分布来近似考虑这些估计量的方差,其中自由度使用萨特思韦特近似法进行估计。通过模拟,我们表明当真实效应是固定效应时,这些三明治估计量的表现几乎与经典估计量一样好,而当真实效应是随机效应时,其表现比经典估计量好得多。即使有些参数是从少量聚类中估计出来的,我们也能实现这些三明治估计量的模拟名义覆盖率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验