Suppr超能文献

铁取代的(锰)超氧化物歧化酶与铁超氧化物歧化酶pH依赖性的光谱比较。

Spectroscopic comparisons of the pH dependencies of Fe-substituted (Mn)superoxide dismutase and Fe-superoxide dismutase.

作者信息

Vance C K, Miller A F

机构信息

Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218, USA.

出版信息

Biochemistry. 1998 Apr 21;37(16):5518-27. doi: 10.1021/bi972580r.

Abstract

We have compared the active sites of Escherichia coli Fe-substituted (Mn)superoxide dismutase [Fe-sub-(Mn)SOD] and Fe-SOD to elucidate the basis for the inactivity of Fe-sub-(Mn)SOD, despite its apparent similarity to Fe-SOD. The active site of (reduced) Fe2+-sub-(Mn)SOD is qualitatively similar to that of native Fe2+-SOD, indicating similar active site structures and coordination environments for Fe2+. Its nativelike pK is indicative of nativelike local electrostatics, and consistent with Fe2+-sub-(Mn)SOD's retention of ability to reduce O2*- [Vance and Miller (1998) J. Am. Chem. Soc. 120(3), 461-467]. The active site of (oxidized) Fe3+-sub-(Mn)SOD differs from that of Fe3+-SOD with respect to the EPR signals produced at both neutral and high pH, indicating different coordination environments for Fe3+. Although Fe3+-sub-(Mn)SOD binds the small anions N3- and F-, the KD for N3- is tighter than that of Fe3+-SOD, suggesting that the (Mn)SOD protein favors anion binding more than does the (Fe)SOD protein. The EPR spectral consequences of binding F- are reminiscent of those observed upon binding the first F- to Fe3+-SOD, but the EPR spectrum obtained upon binding N3- is different, consistent with crystallographic observation of a different binding mode for N3- in Thermus thermophilus Mn-SOD than Fe-SOD [Lah, M., et al. (1995) Biochemistry 34, 1646-1660]. We find a pK of 8.5 to be associated with dramatic changes in the EPR spectrum. In addition, we confirm the pK between 6 and 7 that has previously been reported based on changes in the optical signal and N3- binding [Yamakura, F., et al. (1995) Eur. J. Biochem. 227, 700-706]. However, this latter pK appears to be associated with much subtler changes in the EPR spectrum. The non-native pKs observed in Fe3+-sub-(Mn)SOD and the differences in the Fe3+ coordination indicated by the EPR spectra are consistent with Fe3+-sub-(Mn)SOD's inability to oxidize O2*- and suggest that its low E degrees is due to perturbation of the oxidized state.

摘要

我们比较了大肠杆菌铁取代(锰)超氧化物歧化酶[Fe-sub-(Mn)SOD]和铁超氧化物歧化酶(Fe-SOD)的活性位点,以阐明Fe-sub-(Mn)SOD尽管与Fe-SOD表面相似却无活性的原因。(还原态)Fe2+-sub-(Mn)SOD的活性位点在性质上与天然Fe2+-SOD的相似,这表明Fe2+具有相似的活性位点结构和配位环境。其类似天然的pK值表明具有类似天然的局部静电作用,并且与Fe2+-sub-(Mn)SOD保留还原超氧阴离子自由基(O2*-)的能力一致[万斯和米勒(1998年)《美国化学会志》120(3),461 - 467页]。(氧化态)Fe3+-sub-(Mn)SOD的活性位点在中性和高pH条件下产生的电子顺磁共振(EPR)信号方面与Fe3+-SOD不同,这表明Fe3+具有不同的配位环境。尽管Fe3+-sub-(Mn)SOD能结合小阴离子N3-和F-,但N3-的解离常数(KD)比Fe3+-SOD的更紧密,这表明(锰)超氧化物歧化酶蛋白比(铁)超氧化物歧化酶蛋白更有利于阴离子结合。结合F-后的EPR光谱结果让人联想到首次将F-结合到Fe3+-SOD上时观察到的结果,但结合N3-后得到的EPR光谱不同,这与嗜热栖热菌锰超氧化物歧化酶中N3-与铁超氧化物歧化酶不同的结合模式的晶体学观察结果一致[拉赫,M.等人(1995年)《生物化学》34,1646 - 1660页]。我们发现pK值为8.5时EPR光谱会发生显著变化。此外,我们证实了先前基于光学信号变化和N3-结合报道的6到7之间的pK值[山村,F.等人(1995年)《欧洲生物化学杂志》227,700 - 706页]。然而,后一个pK值似乎与EPR光谱中更细微的变化相关。在Fe3+-sub-(Mn)SOD中观察到的非天然pK值以及EPR光谱表明的Fe3+配位差异与Fe3+-sub-(Mn)SOD无法氧化超氧阴离子自由基(O2*-)一致,并表明其低E°是由于氧化态受到扰动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验