Yamakura F, Kobayashi K, Ue H, Konno M
Department of Chemistry, School of Medicine, Juntendo University, Chiba, Japan.
Eur J Biochem. 1995 Feb 1;227(3):700-6. doi: 10.1111/j.1432-1033.1995.tb20191.x.
Manganese-containing superoxide dismutases (Mn-SODs) and iron-containing superoxide dismutases (Fe-SODs) from aerobic bacteria often show high metal specificity for their enzymic activities by a standard assay system using xanthine-xanthine oxidase and cytochrome c. In this study, we have attempted to characterize the structural basis of the metal specificity of manganese-containing SOD (Mn-SOD) using Fe-substituted Mn-SOD prepared from apo-Mn-SOD from Serratia marcescens. The Fe3+ content of the Fe-substituted enzyme was 1.71 +/- 0.14 mol/mol dimer and the specific activity was 34.8 +/- 4.8 units.mg protein-1.mol Fe3+(-1).mol subunit-1. Fe-substituted Mn-SOD was found to react with the superoxide anion at pH 8.1 with a second-order rate constant of 6 x 10(6) M-1 s-1, which is approximately 1% of that of native Mn-SOD at the same pH. However, the rate constant increased with decreasing pH to approximately 10% (5 x 10(7) M-1 s-1) that of native Mn-SOD at pH 6.0 with a pK of 7.0. The visible absorption spectrum and EPR spectrum of Fe-substituted Mn-SOD also showed pH-dependent changes with pK values of 6.6 and 7.2, respectively. Similarly, the affinity of the azide ion, an analog of the superoxide ion, for iron of Fe-substituted Mn-SOD increased with decreasing pH, with a pK value of 7.0 (e.g. Kd = 0.1 mM at pH 6.2 and 0.9 mM at pH 8.2). The similarity of these pK values suggests that the activity, the spectral changes and the affinity of the azide ion for iron are derived from the same change in the metal environment. After comparison with the reported pK values (around 9) of similar pH-dependent changes in the spectra, the enzymic activity and the affinity of azide for iron of Fe-SOD from Escherichia coli, we proposed that the difference in the pK values of a hydroxide ion binding to iron between Fe-substituted Mn-SOD and Fe-SOD may cause the different pH dependencies of these changes in each SOD.
需氧细菌中的含锰超氧化物歧化酶(Mn-SODs)和含铁超氧化物歧化酶(Fe-SODs),通过使用黄嘌呤 - 黄嘌呤氧化酶和细胞色素c的标准检测系统,其酶活性通常表现出对金属的高度特异性。在本研究中,我们试图利用从粘质沙雷氏菌的脱辅基Mn-SOD制备的铁取代Mn-SOD,来表征含锰超氧化物歧化酶(Mn-SOD)金属特异性的结构基础。铁取代酶的Fe3+含量为1.71±0.14摩尔/摩尔二聚体,比活性为34.8±4.8单位·毫克蛋白-1·摩尔Fe3+(-1)·摩尔亚基-1。发现铁取代的Mn-SOD在pH 8.1时与超氧阴离子反应,二级速率常数为6×10^6 M-1 s-1,这大约是相同pH下天然Mn-SOD的1%。然而,随着pH降低,速率常数增加,在pH 6.0时达到天然Mn-SOD的约10%(5×10^7 M-1 s-1),pK为7.0。铁取代的Mn-SOD的可见吸收光谱和电子顺磁共振光谱也显示出pH依赖性变化,pK值分别为6.6和7.2。同样,超氧离子类似物叠氮离子对铁取代的Mn-SOD中铁的亲和力也随着pH降低而增加,pK值为7.0(例如,在pH 6.2时Kd = 0.1 mM,在pH 8.2时Kd = 0.9 mM)。这些pK值的相似性表明,活性、光谱变化以及叠氮离子对铁的亲和力都源于金属环境的相同变化。在将这些pH依赖性光谱变化、酶活性以及叠氮离子对铁的亲和力的pK值与已报道的大肠杆菌Fe-SOD的类似pH依赖性变化的pK值(约为9)进行比较后,我们提出,铁取代的Mn-SOD和Fe-SOD中与铁结合的氢氧根离子的pK值差异,可能导致每种SOD中这些变化具有不同的pH依赖性。