Maliekal James, Karapetian Anush, Vance Carrie, Yikilmaz Emine, Wu Qiang, Jackson Timothy, Brunold Thomas C, Spiro Thomas G, Miller Anne-Frances
Departments of Chemistry and Biochemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA.
J Am Chem Soc. 2002 Dec 18;124(50):15064-75. doi: 10.1021/ja027319z.
The Fe- and Mn-containing superoxide dismutases catalize the same reaction and have almost superimposable active sites. Therefore, the details of their mechanisms have been assumed to be similar. However, we now show that the pH dependence of Escherichia coli MnSOD activity reflects a different active site proton equilibrium in (oxidized) Mn(3+)SOD than the event that affects the active site pK of oxidized FeSOD. We find that the universally conserved Tyr34 that has a pK above 11.5 in Fe(3+)SOD is responsible for the pK near 9.5 of Mn(3+)SOD and, thus, that the oxidized state pK of Mn(3+)SOD corresponds to an outer-sphere event whereas that of Fe(3+)SOD corresponds to an inner sphere event [Bull, C.; Fee, J. A. J. Am. Chem. Soc. 1985, 107, 3295-3304]. We also present the first description of a reduced-state pK for MnSOD. Mn(2+)SOD's pK involves deprotonation of Tyr34, as does Fe(2+)SOD's pK [Sorkin, D. L.; Miller A.-F. Biochemistry 1997, 36, 4916-4924]. However, the values of the pKs, 10.5 and 8.5 respectively, are quite different and Mn(2+)SOD's pK affects the coordination geometry of Mn(2+), most likely via polarization of the conserved Gln146 that hydrogen bonds to axially coordinated H(2)O. Our findings are consistent with the different electronic configurations of Mn(2+/3+) vs Fe(2+/3+), such as the stronger hydrogen bonding between Gln146 and coordinated solvent in MnSOD than that between the analogous Gln69 and coordinated solvent in FeSOD, and the existence of weakly localized H(2)O near the sixth coordination site of Mn(2+) in Mn(2+)SOD [Borgstahl et al. J. Mol. Biol. 2000, 296, 951-959].
含铁和锰的超氧化物歧化酶催化相同的反应,并且具有几乎重叠的活性位点。因此,人们认为它们的作用机制细节相似。然而,我们现在表明,大肠杆菌锰超氧化物歧化酶(MnSOD)活性对pH的依赖性反映出(氧化态)锰(Ⅲ)超氧化物歧化酶中活性位点质子平衡与影响氧化态铁超氧化物歧化酶(FeSOD)活性位点pK值的情况不同。我们发现,在Fe(Ⅲ)SOD中pK值高于11.5的普遍保守的酪氨酸34(Tyr34),是造成Mn(Ⅲ)SOD中pK值接近9.5的原因,因此,Mn(Ⅲ)SOD的氧化态pK值对应于外层球事件,而Fe(Ⅲ)SOD的氧化态pK值对应于内层球事件[布尔,C.;费伊,J. A.《美国化学会志》1985年,107卷,3295 - 3304页]。我们还首次描述了锰超氧化物歧化酶的还原态pK值。锰(Ⅱ)超氧化物歧化酶的pK值涉及Tyr34的去质子化,铁(Ⅱ)超氧化物歧化酶的pK值也是如此[索尔金,D. L.;米勒,A. - F.《生物化学》1997年,36卷,4916 - 4924页]。然而,pK值分别为10.5和8.5,二者有很大差异,并且锰(Ⅱ)超氧化物歧化酶的pK值影响锰(Ⅱ)的配位几何结构,很可能是通过与轴向配位的H₂O形成氢键的保守谷氨酰胺146(Gln146)的极化作用。我们的研究结果与锰(Ⅱ/Ⅲ)和铁(Ⅱ/Ⅲ)不同的电子构型一致,比如在锰超氧化物歧化酶中Gln146与配位溶剂之间的氢键比在铁超氧化物歧化酶中类似的Gln69与配位溶剂之间的氢键更强,以及在锰(Ⅱ)超氧化物歧化酶中锰(Ⅱ)的第六配位位点附近存在弱定位的H₂O[博格斯塔尔等人,《分子生物学杂志》2000年,296卷,951 - 959页]。