Suppr超能文献

λ溶菌酶的纯化及生化特性分析

Purification and biochemical characterization of the lambda holin.

作者信息

Smith D L, Struck D K, Scholtz J M, Young R

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128, USA.

出版信息

J Bacteriol. 1998 May;180(9):2531-40. doi: 10.1128/JB.180.9.2531-2540.1998.

Abstract

Holins are small phage-encoded cytoplasmic membrane proteins, remarkable for their ability to make membranes permeable in a temporally regulated manner. The purification of S105, the lambda holin, and one of the two products of gene S is described. Because the wild-type S105 holin could be only partially purified from membrane extracts by ion-exchange chromatography, an oligohistidine tag was added internally to the S105 sequence for use in immobilized metal affinity chromatography. An acceptable site for the tag was found between residues 94 and 95 in the highly charged C-terminal domain of S. This allele, designated S105H94, had normal lysis timing under physiological expression conditions. The S105H94 protein was overproduced, purified, and characterized by circular dichroism spectroscopy, which revealed approximately 40% alpha-helix conformation, consistent with the presence of two transmembrane helices. The purified protein was then used to achieve release of fluorescent dye loaded in liposomes in vitro, whereas protein from an isogenic construct carrying an S mutation known to abolish hole formation was inactive in this assay. These results suggest that S is a bitopic membrane protein capable of forming aqueous holes in bilayers.

摘要

穿孔素是噬菌体编码的小型细胞质膜蛋白,其显著特点是能够以时间调控的方式使膜具有通透性。本文描述了λ噬菌体穿孔素S105(基因S的两个产物之一)的纯化过程。由于野生型S105穿孔素仅通过离子交换色谱法从膜提取物中得到部分纯化,因此在S105序列内部添加了一个寡组氨酸标签,用于固定化金属亲和色谱。在S高度带电的C末端结构域中,发现94和95位残基之间是标签的合适位点。这个等位基因命名为S105H94,在生理表达条件下具有正常的裂解时间。S105H94蛋白过量表达、纯化,并通过圆二色光谱进行表征,结果显示其具有约40%的α-螺旋构象,与存在两个跨膜螺旋一致。然后,将纯化后的蛋白用于体外释放脂质体中负载的荧光染料,而携带已知可消除孔形成的S突变的同基因构建体的蛋白在该试验中无活性。这些结果表明,S是一种能够在双层膜中形成水孔的双拓扑膜蛋白。

相似文献

1
Purification and biochemical characterization of the lambda holin.
J Bacteriol. 1998 May;180(9):2531-40. doi: 10.1128/JB.180.9.2531-2540.1998.
2
Oligohistidine tag mutagenesis of the lambda holin gene.
J Bacteriol. 1998 Aug;180(16):4199-211. doi: 10.1128/JB.180.16.4199-4211.1998.
3
Functional analysis of a class I holin, P2 Y.
J Bacteriol. 2013 Mar;195(6):1346-55. doi: 10.1128/JB.01986-12. Epub 2013 Jan 18.
4
The C-terminal sequence of the lambda holin constitutes a cytoplasmic regulatory domain.
J Bacteriol. 1999 May;181(9):2922-9. doi: 10.1128/JB.181.9.2922-2929.1999.
5
Functional analysis of heterologous holin proteins in a lambdaDeltaS genetic background.
FEMS Microbiol Lett. 2000 Mar 15;184(2):179-86. doi: 10.1111/j.1574-6968.2000.tb09011.x.
6
Thiol protection in membrane protein purifications: a study with phage holins.
Anal Biochem. 2009 Jul 15;390(2):221-3. doi: 10.1016/j.ab.2009.04.031. Epub 2009 May 3.
7
Dimerization between the holin and holin inhibitor of phage lambda.
J Bacteriol. 2000 Nov;182(21):6075-81. doi: 10.1128/JB.182.21.6075-6081.2000.
10
S gene expression and the timing of lysis by bacteriophage lambda.
J Bacteriol. 1995 Jun;177(11):3283-94. doi: 10.1128/jb.177.11.3283-3294.1995.

引用本文的文献

2
Spatial and temporal control of lysis by the lambda holin.
mBio. 2024 Feb 14;15(2):e0129023. doi: 10.1128/mbio.01290-23. Epub 2023 Dec 21.
3
Topological examination of the bacteriophage lambda S holin by EPR spectroscopy.
Biochim Biophys Acta Biomembr. 2023 Feb;1865(2):184083. doi: 10.1016/j.bbamem.2022.184083. Epub 2022 Nov 9.
4
Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications.
Front Microbiol. 2022 Oct 26;13:1044143. doi: 10.3389/fmicb.2022.1044143. eCollection 2022.
6
Phage-encoded cationic antimicrobial peptide required for lysis.
J Bacteriol. 2021 Jan 1;204(1):JB0021421. doi: 10.1128/JB.00214-21. Epub 2021 Aug 2.
7
A Novel Benthic Phage Infecting with Strong Replication Ability.
Viruses. 2019 Nov 19;11(11):1081. doi: 10.3390/v11111081.
8
Phage Lysis: Multiple Genes for Multiple Barriers.
Adv Virus Res. 2019;103:33-70. doi: 10.1016/bs.aivir.2018.09.003. Epub 2018 Nov 28.
9
Bacteriophage endolysins and their applications.
Sci Prog. 2016 Jun 1;99(2):183-199. doi: 10.3184/003685016X14627913637705.
10
Stable micron-scale holes are a general feature of canonical holins.
Mol Microbiol. 2014 Jan;91(1):57-65. doi: 10.1111/mmi.12439. Epub 2013 Nov 21.

本文引用的文献

1
Oligohistidine tag mutagenesis of the lambda holin gene.
J Bacteriol. 1998 Aug;180(16):4199-211. doi: 10.1128/JB.180.16.4199-4211.1998.
3
Two beginnings for a single purpose: the dual-start holins in the regulation of phage lysis.
Mol Microbiol. 1996 Aug;21(4):675-82. doi: 10.1046/j.1365-2958.1996.331395.x.
6
Three functions of bacteriophage P1 involved in cell lysis.
J Bacteriol. 1996 Feb;178(4):1099-104. doi: 10.1128/jb.178.4.1099-1104.1996.
7
How to measure and predict the molar absorption coefficient of a protein.
Protein Sci. 1995 Nov;4(11):2411-23. doi: 10.1002/pro.5560041120.
9
Functions involved in bacteriophage P2-induced host cell lysis and identification of a new tail gene.
J Bacteriol. 1994 Aug;176(16):4974-84. doi: 10.1128/jb.176.16.4974-4984.1994.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验