Suppr超能文献

低温对大肠杆菌和荧光假单胞菌体内及体外蛋白质合成的影响。

Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens.

作者信息

Broeze R J, Solomon C J, Pope D H

出版信息

J Bacteriol. 1978 Jun;134(3):861-74. doi: 10.1128/jb.134.3.861-874.1978.

Abstract

The effects of temperature on protein synthesis by Escherichia coli, a mesophile, and Pseudomonas fluorescens, a psychotroph, were investigated by using whole-cell and cell extract preparations. After shifts to 5 degrees C, protein was synthesized at a slowly decreasing rate for 1 h by both organisms, after which P. fluorescens synthesized protein at a new rate corresponding to its 5 degrees growth rate, in contrast to E. coli which did not synthesize protein at a measurable rate. In vitro protein-synthesizing systems using MS-2 RNA, endogenous mRNA, and purified polysomes were utilized to investigate initiation of translation at 5 degrees C. In these systems, P. fluorescens cell extracts synthesized protein at linear rates for up to 2 h at 5 degrees C, whereas E. coli cell extracts synthesized protein for only 25 min at 5 degrees C. The rates of polypeptide elongation, as tested by the incorporation of phenylalanine into polyphenylalanine by cell extract protein-synthesizing systems from both organisms, were identical over the range of 25 to 0 degrees C. The polysome profiles of E. coli whole cells shifted from 37 to 5 degrees C showed accumulation of 70S ribosomal particles and ribosomal subunits at the expense of polysomes. Similar experiements done with P. fluorescens resulted in polysome reformation at 5 degrees C. In vitro experiments demonstrated that the 70S ribosomal particles, which accumulated in E. coli at 5 degrees C, were capable of synthesizing protein in vitro in the absence of added mRNA. These in vivo and in vitro results suggest that incubation of E. coli at subminimal temperatures results in a block in initiation of translation causing polysomal runoff and the accumulation of 70S particles, some of which are 70S monosomes.

摘要

利用全细胞和细胞提取物制剂,研究了温度对嗜温菌大肠杆菌和嗜冷菌荧光假单胞菌蛋白质合成的影响。转移至5℃后,两种菌的蛋白质合成速率均缓慢下降1小时,之后荧光假单胞菌以与其在5℃生长速率相对应的新速率合成蛋白质,而大肠杆菌则未以可测量的速率合成蛋白质。使用MS - 2 RNA、内源性mRNA和纯化多聚核糖体的体外蛋白质合成系统,来研究在5℃时的翻译起始。在这些系统中,荧光假单胞菌细胞提取物在5℃下以线性速率合成蛋白质长达2小时,而大肠杆菌细胞提取物在5℃下仅合成蛋白质25分钟。通过两种菌的细胞提取物蛋白质合成系统将苯丙氨酸掺入多聚苯丙氨酸来测试多肽延伸速率,在25至0℃范围内是相同的。从37℃转移至5℃的大肠杆菌全细胞的多聚核糖体图谱显示,70S核糖体颗粒和核糖体亚基积累,多聚核糖体减少。对荧光假单胞菌进行的类似实验在5℃时导致多聚核糖体重新形成。体外实验表明,在5℃时在大肠杆菌中积累的70S核糖体颗粒,在没有添加mRNA的情况下能够在体外合成蛋白质。这些体内和体外结果表明,在亚最适温度下培养大肠杆菌会导致翻译起始受阻,引起多聚核糖体解体和70S颗粒的积累,其中一些是70S单体。

相似文献

2
Accumulation of 70S monoribosomes in Escherichia coli after energy source shift-down.
J Bacteriol. 1972 Jul;111(1):142-51. doi: 10.1128/jb.111.1.142-151.1972.
4
Role of bacterial ribosomes in barotolerance.
J Bacteriol. 1975 Feb;121(2):664-9. doi: 10.1128/jb.121.2.664-669.1975.
5
Ribsome and messenger specificity in protein synthesis by bacteria.
Biochem Biophys Res Commun. 1974 May 7;58(1):92-8. doi: 10.1016/0006-291x(74)90895-x.
6
Specific ion concentration as a factor in barotolerant protein synthesis in bacteria.
J Bacteriol. 1976 May;126(2):654-60. doi: 10.1128/jb.126.2.654-660.1976.
8
Protein synthesis in cell-free extracts of Coxiella burnetti.
J Gen Microbiol. 1980 Dec;121(2):293-302. doi: 10.1099/00221287-121-2-293.
9
Cell-free protein synthesis using cell extract of Pseudomonas fluorescens and CspA promoter.
Biochem Biophys Res Commun. 2004 Jun 25;319(2):671-6. doi: 10.1016/j.bbrc.2004.05.034.

引用本文的文献

2
Living Material with Temperature-Dependent Light Absorption.
Adv Sci (Weinh). 2023 Oct;10(30):e2301730. doi: 10.1002/advs.202301730. Epub 2023 Sep 15.
3
CspA stimulates translation in the cold of its own mRNA by promoting ribosome progression.
Front Microbiol. 2023 Feb 9;14:1118329. doi: 10.3389/fmicb.2023.1118329. eCollection 2023.
6
The Ribosome as a Switchboard for Bacterial Stress Response.
Front Microbiol. 2021 Jan 8;11:619038. doi: 10.3389/fmicb.2020.619038. eCollection 2020.
7
Protein structure, amino acid composition and sequence determine proteome vulnerability to oxidation-induced damage.
EMBO J. 2020 Dec 1;39(23):e104523. doi: 10.15252/embj.2020104523. Epub 2020 Oct 19.
9
PKS-NRPS Enzymology and Structural Biology: Considerations in Protein Production.
Methods Enzymol. 2018;604:45-88. doi: 10.1016/bs.mie.2018.01.035. Epub 2018 Mar 16.
10
Are in vivo selections on the path to extinction?
Microb Biotechnol. 2017 Jan;10(1):46-49. doi: 10.1111/1751-7915.12490. Epub 2017 Jan 3.

本文引用的文献

1
Amber mutants and polarity in vitro.
J Mol Biol. 1967 Oct 14;29(1):45-58. doi: 10.1016/0022-2836(67)90180-5.
2
Tables for estimating sedimentation through linear concentration gradients of sucrose solution.
Anal Biochem. 1967 Jul;20(1):114-49. doi: 10.1016/0003-2697(67)90271-0.
3
Polysomes extracted from Escherichia coli by freeze-thaw-lysozyme lysis.
Science. 1966 Sep 2;153(3740):1119-20. doi: 10.1126/science.153.3740.1119.
4
Pressure-induced dissociation of sedimenting ribosomes: effect on sedimentation patterns.
Proc Natl Acad Sci U S A. 1971 Aug;68(8):1780-5. doi: 10.1073/pnas.68.8.1780.
5
Aurintricarboxylic acid: inhibitor of initiation of protein synthesis.
Proc Natl Acad Sci U S A. 1971 Jan;68(1):97-101. doi: 10.1073/pnas.68.1.97.
6
Significance of the free 70 s ribosomes in Escherichia coli extracts.
J Mol Biol. 1968 Aug 28;36(1):71-82. doi: 10.1016/0022-2836(68)90220-9.
7
Temperature control of initiation of protein synthesis in Escherichia coli.
J Mol Biol. 1971 Oct 14;61(1):105-21. doi: 10.1016/0022-2836(71)90209-9.
8
Determination of the minimal temperature for growth of Escherichia coli.
J Bacteriol. 1971 Feb;105(2):683-4. doi: 10.1128/jb.105.2.683-684.1971.
10
Secondary structure of bacteriophage f2 ribonucleic acid and the initiation of in vitro protein biosynthesis.
J Mol Biol. 1970 Jun 28;50(3):689-702. doi: 10.1016/0022-2836(70)90093-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验