Suppr超能文献

快速周期性输入对慢节律的频率调节。

Frequency regulation of a slow rhythm by a fast periodic input.

作者信息

Nadim F, Manor Y, Nusbaum M P, Marder E

机构信息

Volen Center, Brandeis University, Waltham, Massachusetts 02254, USA.

出版信息

J Neurosci. 1998 Jul 1;18(13):5053-67. doi: 10.1523/JNEUROSCI.18-13-05053.1998.

Abstract

Many nervous systems contain rhythmically active subnetworks that interact despite oscillating at widely different frequencies. The stomatogastric nervous system of the crab Cancer borealis produces a rapid pyloric rhythm and a considerably slower gastric mill rhythm. We construct and analyze a conductance-based compartmental model to explore the activation of the gastric mill rhythm by the modulatory commissural neuron 1 (MCN1). This model demonstrates that the period of the MCN1-activated gastric mill rhythm, which was thought to be determined entirely by the interaction of neurons in the gastric mill network, can be strongly influenced by inhibitory synaptic input from the pacemaker neuron of the fast pyloric rhythm, the anterior burster (AB) neuron. Surprisingly, the change of the gastric mill period produced by the pyloric input to the gastric mill system can be many times larger than the period of the pyloric rhythm itself. This model illustrates several mechanisms by which a fast oscillatory neuron may control the frequency of a much slower oscillatory network. These findings suggest that it is possible to modify the slow rhythm either by direct modulation or indirectly by modulating the faster rhythm.

摘要

许多神经系统都包含有节律地活动的子网络,尽管它们以截然不同的频率振荡,但仍能相互作用。北方黄道蟹的口胃神经系统会产生快速的幽门节律和慢得多的胃磨节律。我们构建并分析了一个基于电导的房室模型,以探究调节性联合神经元1(MCN1)对胃磨节律的激活作用。该模型表明,MCN1激活的胃磨节律的周期,原本被认为完全由胃磨网络中的神经元相互作用所决定,却会受到来自快速幽门节律的起搏器神经元——前爆发神经元(AB神经元)的抑制性突触输入的强烈影响。令人惊讶的是,幽门输入到胃磨系统所产生的胃磨周期变化可能比幽门节律本身的周期大许多倍。该模型阐释了快速振荡神经元可能控制慢得多的振荡网络频率的几种机制。这些发现表明,有可能通过直接调制或间接调制更快的节律来改变慢节律。

相似文献

1
Frequency regulation of a slow rhythm by a fast periodic input.快速周期性输入对慢节律的频率调节。
J Neurosci. 1998 Jul 1;18(13):5053-67. doi: 10.1523/JNEUROSCI.18-13-05053.1998.
5
Convergent rhythm generation from divergent cellular mechanisms.从不同的细胞机制中产生会聚节律。
J Neurosci. 2013 Nov 13;33(46):18047-64. doi: 10.1523/JNEUROSCI.3217-13.2013.

引用本文的文献

1
System-level brain modeling.系统级脑建模。
Front Comput Neurosci. 2025 Jul 16;19:1607239. doi: 10.3389/fncom.2025.1607239. eCollection 2025.
4
Feeding state-dependent modulation of feeding-related motor patterns.摄食状态依赖性调制摄食相关运动模式。
J Neurophysiol. 2021 Dec 1;126(6):1903-1924. doi: 10.1152/jn.00387.2021. Epub 2021 Oct 20.

本文引用的文献

5
What matters in neuronal locking?神经元锁定的关键因素是什么?
Neural Comput. 1996 Nov 15;8(8):1653-76. doi: 10.1162/neco.1996.8.8.1653.
7
Oscillation in motor pattern-generating networks.运动模式生成网络中的振荡。
Curr Opin Neurobiol. 1995 Dec;5(6):816-23. doi: 10.1016/0959-4388(95)80111-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验