Nadim F, Manor Y, Nusbaum M P, Marder E
Volen Center, Brandeis University, Waltham, Massachusetts 02254, USA.
J Neurosci. 1998 Jul 1;18(13):5053-67. doi: 10.1523/JNEUROSCI.18-13-05053.1998.
Many nervous systems contain rhythmically active subnetworks that interact despite oscillating at widely different frequencies. The stomatogastric nervous system of the crab Cancer borealis produces a rapid pyloric rhythm and a considerably slower gastric mill rhythm. We construct and analyze a conductance-based compartmental model to explore the activation of the gastric mill rhythm by the modulatory commissural neuron 1 (MCN1). This model demonstrates that the period of the MCN1-activated gastric mill rhythm, which was thought to be determined entirely by the interaction of neurons in the gastric mill network, can be strongly influenced by inhibitory synaptic input from the pacemaker neuron of the fast pyloric rhythm, the anterior burster (AB) neuron. Surprisingly, the change of the gastric mill period produced by the pyloric input to the gastric mill system can be many times larger than the period of the pyloric rhythm itself. This model illustrates several mechanisms by which a fast oscillatory neuron may control the frequency of a much slower oscillatory network. These findings suggest that it is possible to modify the slow rhythm either by direct modulation or indirectly by modulating the faster rhythm.
许多神经系统都包含有节律地活动的子网络,尽管它们以截然不同的频率振荡,但仍能相互作用。北方黄道蟹的口胃神经系统会产生快速的幽门节律和慢得多的胃磨节律。我们构建并分析了一个基于电导的房室模型,以探究调节性联合神经元1(MCN1)对胃磨节律的激活作用。该模型表明,MCN1激活的胃磨节律的周期,原本被认为完全由胃磨网络中的神经元相互作用所决定,却会受到来自快速幽门节律的起搏器神经元——前爆发神经元(AB神经元)的抑制性突触输入的强烈影响。令人惊讶的是,幽门输入到胃磨系统所产生的胃磨周期变化可能比幽门节律本身的周期大许多倍。该模型阐释了快速振荡神经元可能控制慢得多的振荡网络频率的几种机制。这些发现表明,有可能通过直接调制或间接调制更快的节律来改变慢节律。