Suppr超能文献

构象灵活性的调节是蛋白质热适应中的关键事件。

Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins.

作者信息

Závodszky P, Kardos J, Petsko G A

机构信息

Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Pf. 7, H-1518 Budapest, Hungary.

出版信息

Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7406-11. doi: 10.1073/pnas.95.13.7406.

Abstract

3-Isopropylmalate dehydrogenase (IPMDH, E.C. 1.1.1.85) from the thermophilic bacterium Thermus thermophilus HB8 is homologous to IPMDH from the mesophilic Escherichia coli, but has an approximately 17 degreesC higher melting temperature. Its temperature optimum is 22-25 degreesC higher than that of the E. coli enzyme; however, it is hardly active at room temperature. The increased conformational rigidity required to stabilize the thermophilic enzyme against heat denaturation might explain its different temperature-activity profile. Hydrogen/deuterium exchange studies were performed on this thermophilic-mesophilic enzyme pair to compare their conformational flexibilities. It was found that Th. thermophilus IPMDH is significantly more rigid at room temperature than E. coli IPMDH, whereas the enzymes have nearly identical flexibilities under their respective optimal working conditions, suggesting that evolutionary adaptation tends to maintain a "corresponding state" regarding conformational flexibility. These observations confirm that conformational fluctuations necessary for catalytic function are restricted at room temperature in the thermophilic enzyme, suggesting a close relationship between conformational flexibility and enzyme function.

摘要

嗜热栖热菌HB8的3-异丙基苹果酸脱氢酶(IPMDH,酶委员会编号1.1.1.85)与嗜温性大肠杆菌的IPMDH同源,但其解链温度高出约17摄氏度。其最适温度比大肠杆菌的该酶高22 - 25摄氏度;然而,它在室温下几乎没有活性。稳定嗜热酶以抵抗热变性所需的构象刚性增加可能解释了其不同的温度 - 活性曲线。对这对嗜热 - 嗜温酶进行了氢/氘交换研究,以比较它们的构象灵活性。结果发现,嗜热栖热菌的IPMDH在室温下比大肠杆菌的IPMDH刚性显著更高,而这两种酶在各自的最佳工作条件下具有几乎相同的灵活性,这表明进化适应倾向于在构象灵活性方面维持一种“对应状态”。这些观察结果证实,嗜热酶在室温下催化功能所需的构象波动受到限制,这表明构象灵活性与酶功能之间存在密切关系。

相似文献

引用本文的文献

8
Ratcheting synthesis.棘轮合成
Nat Rev Chem. 2024 Jan;8(1):8-29. doi: 10.1038/s41570-023-00558-y. Epub 2023 Dec 15.
10
Thermal tuning of protein hydration in a hyperthermophilic enzyme.嗜热酶中蛋白质水合作用的热调节
Front Mol Biosci. 2022 Nov 28;9:1037445. doi: 10.3389/fmolb.2022.1037445. eCollection 2022.

本文引用的文献

1
FORMATION OF THE SECONDARY AND TERTIARY STRUCTURE OF ENZYMES.酶二级和三级结构的形成
Adv Enzymol Relat Subj Biochem. 1964;26:89-114. doi: 10.1002/9780470122716.ch3.
10
Hydrogen exchange and the dynamic structure of proteins.氢交换与蛋白质的动态结构
Mol Cell Biochem. 1982 Oct 29;48(3):135-60. doi: 10.1007/BF00421225.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验