Suppr超能文献

癫痫发作的实时自动检测与定量分析以及临床发作的短期预测

Real-time automated detection and quantitative analysis of seizures and short-term prediction of clinical onset.

作者信息

Osorio I, Frei M G, Wilkinson S B

机构信息

Department of Neurology, University of Kansas Medical Center, Kansas City 66160-7314, USA.

出版信息

Epilepsia. 1998 Jun;39(6):615-27. doi: 10.1111/j.1528-1157.1998.tb01430.x.

Abstract

PURPOSE

We describe an algorithm for rapid real-time detection, quantitation, localization of seizures, and prediction of their clinical onset.

METHODS

Advanced digital signal processing techniques used in time-frequency localization, image processing, and identification of time-varying stochastic systems were used to develop the algorithm, which operates in generic or adaptable "modes." The "generic mode" was tested on (a) 125 partial seizures (each contained in a 10-min segment) involving the mesial temporal regions and recorded using depth electrodes from 16 subjects, and (b) 205 ten-minute segments of randomly selected interictal (nonseizure) data. The performance of the algorithm was compared with expert visual analysis, the current "gold standard."

RESULTS

The generic algorithm achieved perfect sensitivity and specificity (no false-positive and no false-negative detections) over the entire data set. Seizure intensity, a novel measure that seems clinically relevant, ranged between 35.7 and 6129. Detection was sufficiently rapid to allow prediction of clinical onset in 92% of seizures by a mean of 15.5 s.

CONCLUSIONS

This algorithm, which was implemented with a personal computer, represents a definitive step toward rapid and accurate detection and prediction of seizures. It may also enable development of intelligent devices for automated seizure warning and treatment and stimulate new study of the dynamics of seizures and of the epileptic brain.

摘要

目的

我们描述了一种用于癫痫发作的快速实时检测、定量、定位以及临床发作预测的算法。

方法

采用了时频定位、图像处理和时变随机系统识别中使用的先进数字信号处理技术来开发该算法,该算法以通用或自适应“模式”运行。“通用模式”在以下方面进行了测试:(a)125例累及内侧颞叶区域的部分性癫痫发作(每个发作包含在10分钟的片段中),这些发作由16名受试者使用深度电极记录;(b)205个随机选择的发作间期(非发作)数据的10分钟片段。将该算法的性能与专家视觉分析(当前的“金标准”)进行了比较。

结果

通用算法在整个数据集中实现了完美的敏感性和特异性(无假阳性和无假阴性检测)。癫痫发作强度是一种新的指标,似乎具有临床相关性,范围在35.7至6129之间。检测速度足够快,平均提前15.5秒就能预测92%的癫痫发作的临床发作。

结论

该算法在个人计算机上实现,代表了朝着快速准确地检测和预测癫痫发作迈出的决定性一步。它还可能推动用于自动癫痫发作预警和治疗的智能设备的开发,并激发对癫痫发作和癫痫性大脑动力学的新研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验