Suppr超能文献

关于使用贝叶斯方法评估房室神经模型。

On the use of Bayesian methods for evaluating compartmental neural models.

作者信息

Baldi P, Vanier M C, Bower J M

机构信息

Net-ID, Inc., Los Angeles, CA 90042, USA.

出版信息

J Comput Neurosci. 1998 Jul;5(3):285-314. doi: 10.1023/a:1008887028637.

Abstract

Computational modeling is being used increasingly in neuroscience. In deriving such models, inference issues such as model selection, model complexity, and model comparison must be addressed constantly. In this article we present briefly the Bayesian approach to inference. Under a simple set of commonsense axioms, there exists essentially a unique way of reasoning under uncertainty by assigning a degree of confidence to any hypothesis or model, given the available data and prior information. Such degrees of confidence must obey all the rules governing probabilities and can be updated accordingly as more data becomes available. While the Bayesian methodology can be applied to any type of model, as an example we outline its use for an important, and increasingly standard, class of models in computational neuroscience--compartmental models of single neurons. Inference issues are particularly relevant for these models: their parameter spaces are typically very large, neurophysiological and neuroanatomical data are still sparse, and probabilistic aspects are often ignored. As a tutorial, we demonstrate the Bayesian approach on a class of one-compartment models with varying numbers of conductances. We then apply Bayesian methods on a compartmental model of a real neuron to determine the optimal amount of noise to add to the model to give it a level of spike time variability comparable to that found in the real cell.

摘要

计算建模在神经科学中的应用越来越广泛。在推导此类模型时,必须不断解决诸如模型选择、模型复杂性和模型比较等推理问题。在本文中,我们简要介绍了贝叶斯推理方法。在一组简单的常识性公理下,在给定可用数据和先验信息的情况下,通过为任何假设或模型赋予一定程度的置信度,本质上存在一种在不确定性下进行推理的独特方式。这种置信度必须遵循所有概率规则,并随着更多数据的获取而相应更新。虽然贝叶斯方法可以应用于任何类型的模型,但作为示例,我们概述了其在计算神经科学中一类重要且日益标准的模型——单个神经元的房室模型中的应用。推理问题与这些模型特别相关:它们的参数空间通常非常大,神经生理学和神经解剖学数据仍然稀少,而且概率方面常常被忽视。作为一个教程,我们在一类具有不同电导数量的单房室模型上演示贝叶斯方法。然后,我们将贝叶斯方法应用于一个真实神经元的房室模型,以确定添加到模型中的最佳噪声量,使其尖峰时间变异性水平与真实细胞中的相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验