Suppr超能文献

流体应力对附着于微通道壁的细胞影响的理论模型研究。

A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall.

作者信息

Gaver D P, Kute S M

机构信息

Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118 USA.

出版信息

Biophys J. 1998 Aug;75(2):721-33. doi: 10.1016/S0006-3495(98)77562-9.

Abstract

We predict the amplification of mechanical stress, force, and torque on an adherent cell due to flow within a narrow microchannel. We model this system as a semicircular bulge on a microchannel wall, with pressure-driven flow. This two-dimensional model is solved computationally by the boundary element method. Algebraic expressions are developed by using forms suggested by lubrication theory that can be used simply and accurately to predict the fluid stress, force, and torque based upon the fluid viscosity, muoffhannel height, H, cell size, R, and flow rate per unit width, Q2-d. This study shows that even for the smallest cells (gamma = R/H << 1), the stress, force, and torque can be significantly greater than that predicted based on flow in a cell-free system. Increased flow resistance and fluid stress amplification occur with bigger cells (gamma > 0.25), because of constraints by the channel wall. In these cases we find that the shear stress amplification is proportional to Q2-d(1-gamma)-2, and the force and torque are proportional to Q2-d(1-gamma2)-5/2. Finally, we predict the fluid mechanical influence on three-dimensional immersed objects. These algebraic expressions have an accuracy of approximately 10% for flow in channels and thus are useful for the analysis of cells in flow chambers. For cell adhesion in tubes, the approximations are accurate to approximately 25% when gamma > 0.5. These calculations may thus be used to simply predict fluid mechanical interactions with cells in these constrained settings. Furthermore, the modeling approach may be useful in understanding more complex systems that include cell deformability and cell-cell interactions.

摘要

我们预测由于狭窄微通道内的流动,附着细胞上的机械应力、力和扭矩会增大。我们将此系统建模为微通道壁上的半圆形凸起,并存在压力驱动的流动。通过边界元法对这个二维模型进行计算求解。利用润滑理论提出的形式推导出代数表达式,这些表达式可基于流体粘度、微通道高度(H)、细胞大小(R)以及单位宽度的流速(Q_{2 - d}),简单而准确地预测流体应力、力和扭矩。本研究表明,即使对于最小的细胞((\gamma = R/H << 1)),应力、力和扭矩也可能显著大于基于无细胞系统中流动所预测的值。对于较大的细胞((\gamma > 0.25)),由于通道壁的限制,会出现流动阻力增加和流体应力放大的情况。在这些情况下,我们发现剪切应力放大与(Q_{2 - d}(1 - \gamma)^{-2})成正比,力和扭矩与(Q_{2 - d}(1 - \gamma^2)^{-5/2})成正比。最后,我们预测流体力学对三维浸没物体的影响。这些代数表达式对于通道内的流动,精度约为(10%),因此可用于分析流动腔中的细胞。对于管内的细胞黏附,当(\gamma > 0.5)时,近似精度约为(25%)。因此,这些计算可用于简单预测在这些受限环境中细胞与流体的力学相互作用。此外,该建模方法可能有助于理解包括细胞可变形性和细胞间相互作用在内的更复杂系统。

相似文献

1
A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall.
Biophys J. 1998 Aug;75(2):721-33. doi: 10.1016/S0006-3495(98)77562-9.
7
Force acting on spheres adhered to a vessel wall.
Biorheology. 1997 Jul-Oct;34(4-5):249-60. doi: 10.1016/S0006-355X(98)00003-1.
8
Flow resistance and drag forces due to multiple adherent leukocytes in postcapillary vessels.
Biophys J. 1998 Jun;74(6):3292-301. doi: 10.1016/S0006-3495(98)78036-1.
9
Deformation mechanism of leukocyte adhering to vascular surface under steady shear flow.
Sci China C Life Sci. 2004 Apr;47(2):165-74. doi: 10.1360/02yc0255.

引用本文的文献

1
Research on Simulation Optimization of MEMS Microfluidic Structures at the Microscale.
Micromachines (Basel). 2025 Jun 11;16(6):695. doi: 10.3390/mi16060695.
2
Flow-induced mechano-modulation of intestinal permeability on chip.
Mater Today Bio. 2025 Jun 6;33:101951. doi: 10.1016/j.mtbio.2025.101951. eCollection 2025 Aug.
3
Trade-off movement between hydraulic resistance escape and shear stress escape by cancer cells.
Biophys J. 2025 Feb 4;124(3):528-539. doi: 10.1016/j.bpj.2024.12.021. Epub 2024 Dec 21.
4
Design and implementation of a lab-on-a-chip for assisted reproductive technologies.
Bioimpacts. 2024;14(4):28902. doi: 10.34172/bi.2023.28902. Epub 2023 Dec 10.
5
Modelling how curved active proteins and shear flow pattern cellular shape and motility.
Front Cell Dev Biol. 2023 May 31;11:1193793. doi: 10.3389/fcell.2023.1193793. eCollection 2023.
7
Design and Microfabrication of An On-Chip Oocyte Maturation System for Reduction of Apoptosis.
Cell J. 2021 Apr;23(1):32-39. doi: 10.22074/cellj.2021.7056. Epub 2021 Mar 1.
8
Low intermittent flow promotes rat mesenchymal stem cell differentiation in logarithmic fluid shear device.
Biomicrofluidics. 2020 Oct 27;14(5):054107. doi: 10.1063/5.0024437. eCollection 2020 Sep.
10
Biophysics of Cell-Substrate Interactions Under Shear.
Front Cell Dev Biol. 2019 Nov 8;7:251. doi: 10.3389/fcell.2019.00251. eCollection 2019.

本文引用的文献

2
Tensegrity: the architectural basis of cellular mechanotransduction.
Annu Rev Physiol. 1997;59:575-99. doi: 10.1146/annurev.physiol.59.1.575.
3
Effects of fluid dynamic forces on vascular cell adhesion.
J Clin Invest. 1996 Dec 15;98(12):2661-5. doi: 10.1172/JCI119088.
4
A microscale model of bacterial swimming, chemotaxis and substrate transport.
J Theor Biol. 1995 Dec 21;177(4):325-40. doi: 10.1006/jtbi.1995.0251.
7
Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers.
Am J Physiol. 1995 Apr;268(4 Pt 2):H1765-72. doi: 10.1152/ajpheart.1995.268.4.H1765.
8
Flow-mediated endothelial mechanotransduction.
Physiol Rev. 1995 Jul;75(3):519-60. doi: 10.1152/physrev.1995.75.3.519.
9
Dynamics of neutrophil rolling over stimulated endothelium in vitro.
Biophys J. 1994 Jun;66(6):2202-9. doi: 10.1016/S0006-3495(94)81016-1.
10
Morphometry of pulmonary veins in man.
Lung. 1981;159(4):211-8. doi: 10.1007/BF02713917.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验