Suppr超能文献

不同激光碎石器产生的瞬态空化和声发射。

Transient cavitation and acoustic emission produced by different laser lithotripters.

作者信息

Zhong P, Tong H L, Cocks F H, Pearle M S, Preminger G M

机构信息

Department of Mechanical Engineering and Materials Science, Duke University Medical Center, Durham, North Carolina 27708, USA.

出版信息

J Endourol. 1998 Aug;12(4):371-8. doi: 10.1089/end.1998.12.371.

Abstract

Transient cavitation and shockwave generation produced by pulsed-dye and holmium:YAG laser lithotripters were studied using high-speed photography and acoustic emission measurements. In addition, stone phantoms were used to compare the fragmentation efficiency of various laser and electrohydraulic lithotripters. The pulsed-dye laser, with a wavelength (504 nm) strongly absorbed by most stone materials but not by water, and a short pulse duration of approximately 1 microsec, induces plasma formation on the surface of the target calculi. Subsequently, the rapid expansion of the plasma forms a cavitation bubble, which expands spherically to a maximum size and then collapses violently, leading to strong shockwave generation and microjet impingement, which comprises the primary mechanism for stone fragmentation with short-pulse lasers. In contrast, the holmium laser, with a wavelength (2100 nm) most strongly absorbed by water as well as by all stone materials and a long pulse duration of 250 to 350 microsec, produces an elongated, pear-shaped cavitation bubble at the tip of the optical fiber that forms a vapor channel to conduct the ensuing laser energy to the target stone (Moss effect). The expansion and subsequent collapse of the elongated bubble is asymmetric, resulting in weak shockwave generation and microjet impingement. Thus, stone fragmentation in holmium laser lithotripsy is caused primarily by thermal ablation (drilling effect).

摘要

使用高速摄影和声发射测量技术研究了脉冲染料激光和钬

钇铝石榴石激光碎石机产生的瞬态空化和冲击波。此外,使用结石模型来比较各种激光和液电碎石机的碎石效率。脉冲染料激光的波长(504nm)能被大多数结石材料强烈吸收,但不被水吸收,脉冲持续时间约为1微秒,可在目标结石表面诱导形成等离子体。随后,等离子体的快速膨胀形成一个空化泡,该空化泡呈球形膨胀至最大尺寸,然后剧烈坍塌,导致强烈的冲击波产生和微射流撞击,这构成了短脉冲激光碎石的主要机制。相比之下,钬激光的波长(2100nm)能被水以及所有结石材料强烈吸收,脉冲持续时间为250至350微秒,在光纤尖端产生一个细长的梨形空化泡,该空化泡形成一个蒸汽通道,将随后的激光能量传导至目标结石(莫斯效应)。细长空化泡的膨胀和随后的坍塌是不对称的,导致产生的冲击波和微射流撞击较弱。因此,钬激光碎石术中的结石破碎主要是由热消融(钻孔效应)引起的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验