Suppr超能文献

体外张力敏感的动粒磷酸化

Tension-sensitive kinetochore phosphorylation in vitro.

作者信息

Nicklas R B, Campbell M S, Ward S C, Gorbsky G J

机构信息

Department of Zoology, Duke University, Durham, NC 27708, USA.

出版信息

J Cell Sci. 1998 Nov;111 ( Pt 21):3189-96. doi: 10.1242/jcs.111.21.3189.

Abstract

Many cells have a checkpoint that detects a single misattached chromosome and delays anaphase, allowing time for error correction. Detection probably depends on tension-sensitive kinetochore protein phosphorylation. Somehow, mechanical tension, or some consequence of tension, produces a chemical change, dephosphorylation. The mechanism of tension-mediated dephosphorylation can be approached using an in vitro system. Earlier work showed that the kinetochores of washed chromosomes from a mammalian cell line can be phosphorylated in vitro simply by incubation with ATP and a phosphatase inhibitor. We confirm this for chromosomes from insect meiotic cells. Thus, kinetochores of washed chromosomes from diverse sources contain a complete phosphorylation system: a kinase, a phosphatase and the substrate protein(s). We show that phosphorylation in vitro is sensitive to tension, as it is in living cells. This makes the conditions required for phosphorylation in vitro relevant to the process in living cells. The phosphatase is ruled out as the tension-sensitive component in vitro, leaving either the kinase or the substrate as the sensitive component. We show that a kinase extracted from mammalian cells in mitosis phosphorylates the kinetochores of insect meiotic chromosomes very effectively. The mammalian kinase under-phosphorylates the kinetochore of the insect's X-chromosome, just as the native insect kinase does. This provides a clue to the evolution of a chromosome that is not detected by the checkpoint. The mammalian kinase is not tightly bound to the chromosome and thus functions primarily in solution. This suggests that the substrate's phosphorylatable groups are freely available to outside constituents, e.g. regulators, as well as to the kinetochore's own kinase and phosphatase.

摘要

许多细胞都有一个检查点,可检测到单个错连的染色体并延迟后期,从而留出纠错时间。检测可能依赖于张力敏感的动粒蛋白磷酸化。不知何故,机械张力或张力的某些后果会产生一种化学变化,即去磷酸化。可以使用体外系统来研究张力介导的去磷酸化机制。早期研究表明,来自哺乳动物细胞系的洗涤过的染色体的动粒在体外只需与ATP和磷酸酶抑制剂一起孵育就能被磷酸化。我们对昆虫减数分裂细胞的染色体也证实了这一点。因此,来自不同来源的洗涤过的染色体的动粒含有一个完整的磷酸化系统:一种激酶、一种磷酸酶和底物蛋白。我们发现体外磷酸化对张力敏感,就像在活细胞中一样。这使得体外磷酸化所需的条件与活细胞中的过程相关。体外实验排除了磷酸酶作为张力敏感成分的可能性,那么敏感成分要么是激酶,要么是底物。我们发现从有丝分裂的哺乳动物细胞中提取的一种激酶能非常有效地使昆虫减数分裂染色体的动粒磷酸化。这种哺乳动物激酶使昆虫X染色体的动粒磷酸化不足,就像昆虫自身的天然激酶一样。这为一个未被检查点检测到的染色体的进化提供了线索。这种哺乳动物激酶与染色体结合不紧密,因此主要在溶液中起作用。这表明底物的可磷酸化基团可自由地暴露给外部成分,如调节因子,以及动粒自身的激酶和磷酸酶。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验