Keightley P D
Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, Scotland, UK.
Genetics. 1998 Nov;150(3):1283-93. doi: 10.1093/genetics/150.3.1283.
The properties and limitations of maximum likelihood (ML) inference of genome-wide mutation rates (U) and parameters of distributions of mutation effects are investigated. Mutation parameters are estimated from simulated experiments in which mutations randomly accumulate in inbred lines. ML produces more accurate estimates than the procedure of Bateman and Mukai and is more robust if the data do not conform to the model assumed. Unbiased ML estimates of the mutation effects distribution parameters can be obtained if a value for U can be assumed, but if U is estimated simultaneously with the distribution parameters, likelihood may increase monotonically as a function of U. If the distribution of mutation effects is leptokurtic, the number of mutation events per line is large, or if genotypic values are poorly estimated, only a lower limit for U, an upper limit for the mean mutation effect, and a lower limit for the kurtosis of the distribution can be given. It is argued that such lower (upper) limits are appropriate minima (maxima). Estimates of the mean mutational effect are unbiased but may convey little about the properties of the distribution if it is leptokurtic.
研究了全基因组突变率(U)和突变效应分布参数的最大似然(ML)推断的性质和局限性。突变参数是根据模拟实验估计的,在这些实验中,突变在近交系中随机积累。与贝特曼和向井的方法相比,最大似然法能产生更准确的估计,并且如果数据不符合所假设的模型,它也更稳健。如果可以假定U的值,就可以获得突变效应分布参数的无偏最大似然估计,但如果U与分布参数同时估计,似然可能会随着U单调增加。如果突变效应的分布是尖峰态的,每行的突变事件数量很大,或者如果基因型值估计不佳,那么只能给出U的下限、平均突变效应的上限以及分布峰度的下限。有人认为,这样的下限(上限)是合适的最小值(最大值)。平均突变效应的估计是无偏的,但如果分布是尖峰态的,可能无法很好地反映分布的性质。