Suppr超能文献

反胶束中间体以及层状、立方相和反六角形脂质相之间的转变。I. Lα→HII相转变的机制。

Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. I. Mechanism of the L alpha----HII phase transitions.

作者信息

Siegel D P

出版信息

Biophys J. 1986 Jun;49(6):1155-70. doi: 10.1016/S0006-3495(86)83744-4.

Abstract

A model for the thermotropic transitions between lamellar (L alpha) and inverted hexagonal (HII) phases is developed. According to this model, the first structures to form during the L alpha----HII transition are inverted micellar intermediates (IMI). The structure, formation rates, and half-lives of IMI ("lipidic particles") were described previously. IMI coalesce in the planes between apposed bilayers to form two types of HII phase precursors. The first is a monolayer-encapsulated HII tube (RMI), which forms via coalescence of IMI in pearl-string fashion. These structures have been proposed previously based on electron microscopic evidence. I show that if only RMI form, L alpha in equilibrium HII transitions cannot occur on observed time scales (faster than seconds). I propose that a second type of intermediate, a line defect (LD), forms as well. LD should form via IMI-IMI coalescence in significant numbers, and elongate rapidly into structures consisting of two apposed halves of HII tubes. Transitions via LD can occur in less than seconds, the time depending on the fraction of IMI-IMI coalescence events producing LD and the number of IMI per unit of bilayer area. Hysteresis in the phase transition temperature may be due to the difference in water content of the two phases and their low water permeabilities. The model is in qualitative agreement with morphological, NMR, and x-ray diffraction data on phospholipid systems. The results are relevant to IMI-mediated interactions between unilamellar bilayer vesicles, and to the structure of inverted cubic phases observed in some phospholipid systems. These will be discussed in subsequent publications (D. P. Siegel, manuscript in preparation).

摘要

建立了一个关于层状(Lα)相和反相六角(HII)相之间热致转变的模型。根据该模型,在Lα向HII转变过程中首先形成的结构是反胶束中间体(IMI)。之前已描述了IMI(“脂质颗粒”)的结构、形成速率和半衰期。IMI在相对的双层之间的平面中合并形成两种类型的HII相前体。第一种是单层包裹的HII管(RMI),它通过IMI以珍珠串的方式合并形成。这些结构之前已根据电子显微镜证据提出。我表明,如果只形成RMI,在观察到的时间尺度(快于几秒)上,平衡HII转变中的Lα相就不会发生。我提出还会形成第二种类型的中间体,即线缺陷(LD)。LD应该通过大量的IMI - IMI合并形成,并迅速伸长为包含HII管两个相对半部的结构。通过LD的转变可以在不到几秒的时间内发生,时间取决于产生LD的IMI - IMI合并事件的比例以及每单位双层面积的IMI数量。相变温度的滞后现象可能是由于两相水含量的差异及其低透水性。该模型与磷脂系统的形态学、核磁共振和X射线衍射数据在定性上一致。这些结果与IMI介导的单层双层囊泡之间的相互作用以及在一些磷脂系统中观察到的反相立方相的结构有关。这些将在后续出版物中讨论(D. P. 西格尔,正在准备的手稿)。

相似文献

引用本文的文献

本文引用的文献

1
Phospholipids and membrane transport.磷脂与膜转运
Can J Biochem. 1980 Oct;58(10):1091-100. doi: 10.1139/o80-147.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验