Suppr超能文献

膜融合中间体的能量学:茎状中间体和反胶束中间体机制的比较

Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms.

作者信息

Siegel D P

机构信息

Miami Valley Laboratories, Procter & Gamble Company, Cincinnati, Ohio 45239-8707.

出版信息

Biophys J. 1993 Nov;65(5):2124-40. doi: 10.1016/S0006-3495(93)81256-6.

Abstract

To understand the mechanism of membrane fusion, we have to infer the sequence of structural transformations that occurs during the process. Here, it is shown how one can estimate the lipid composition-dependent free energies of intermediate structures of different geometries. One can then infer which fusion mechanism is the best explanation of observed behavior in different systems by selecting the mechanism that requires the least energy. The treatment involves no adjustable parameters. It includes contributions to the intermediate energy resulting from the presence of hydrophobic interstices within structures formed between apposed bilayers. Results of these calculations show that a modified form of the stalk mechanism proposed by others is a likely fusion mechanism in a wide range of lipid compositions, but a mechanism based on inverted micellar intermediates (IMIs) is not. This should be true even in the vicinity of the lamellar/inverted hexagonal phase transition, where IMI formation would be most facile. Another prediction of the calculations is that traces of apolar lipids (e.g., long-chain alkanes) in membranes should have a substantial influence on fusion rates in general. The same theoretical methods can be used to generate and refine mechanisms for protein-mediated fusion.

摘要

为了理解膜融合的机制,我们必须推断该过程中发生的结构转变顺序。在此,展示了如何估算不同几何形状中间结构的脂质组成依赖性自由能。然后,通过选择能量需求最少的机制,人们可以推断哪种融合机制最能解释在不同系统中观察到的行为。该处理过程不涉及可调参数。它包括由于在相对双层之间形成的结构中存在疏水间隙而对中间能量产生的贡献。这些计算结果表明,其他人提出的茎状机制的一种改进形式在广泛的脂质组成范围内可能是一种融合机制,但基于反胶束中间体(IMIs)的机制则不是。即使在层状/反相六方相转变附近,IMIs形成最容易的地方,情况也应该如此。计算的另一个预测是,膜中痕量的非极性脂质(例如长链烷烃)通常应该对融合速率有重大影响。相同的理论方法可用于生成和完善蛋白质介导的融合机制。

相似文献

10
The Gaussian curvature elastic energy of intermediates in membrane fusion.膜融合中间体的高斯曲率弹性能量。
Biophys J. 2008 Dec;95(11):5200-15. doi: 10.1529/biophysj.108.140152. Epub 2008 Sep 19.

引用本文的文献

1
Why are so many fusogens rod-shaped?为什么这么多融合蛋白呈杆状?
bioRxiv. 2025 Jul 3:2025.06.30.662463. doi: 10.1101/2025.06.30.662463.
7
Modelling membrane reshaping by staged polymerization of ESCRT-III filaments.通过 ESCRT-III 丝的阶段性聚合来模拟膜重塑。
PLoS Comput Biol. 2022 Oct 17;18(10):e1010586. doi: 10.1371/journal.pcbi.1010586. eCollection 2022 Oct.
8
The beginning and the end of SNARE-induced membrane fusion.SNARE 诱导的膜融合的开始和结束。
FEBS Open Bio. 2022 Nov;12(11):1958-1979. doi: 10.1002/2211-5463.13447. Epub 2022 Jun 28.
9
Mechanism of Membrane Fusion: Interplay of Lipid and Peptide.膜融合机制:脂质与肽的相互作用。
J Membr Biol. 2022 Jun;255(2-3):211-224. doi: 10.1007/s00232-022-00233-1. Epub 2022 Apr 18.

本文引用的文献

5
Membrane fusion through point defects in bilayers.通过双层膜中的点缺陷实现膜融合。
Science. 1981 May 22;212(4497):921-3. doi: 10.1126/science.7233185.
10
Lipidic intramembranous particles.脂质膜内颗粒
Biochim Biophys Acta. 1984 Jan 27;779(1):43-63. doi: 10.1016/0304-4157(84)90003-0.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验