Miranda L P, Alewood P F
Centre for Drug Design & Development, The University of Queensland, Brisbane, Queensland 4072, Australia.
Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1181-6. doi: 10.1073/pnas.96.4.1181.
The chemical synthesis of peptides and small proteins is a powerful complementary strategy to recombinant protein overexpression and is widely used in structural biology, immunology, protein engineering, and biomedical research. Despite considerable improvements in the fidelity of peptide chain assembly, side-chain protection, and postsynthesis analysis, a limiting factor in accessing polypeptides containing greater than 50 residues remains the time taken for chain assembly. The ultimate goal of this work is to establish highly efficient chemical procedures that achieve chain-assembly rates of approximately 10-15 residues per hour, thus underpinning the rapid chemical synthesis of long polypeptides and proteins, including cytokines, growth factors, protein domains, and small enzymes. Here we report Boc chemistry that employs O-(7-azabenzotriazol-1-yl)-N,N, N',N'-tetramethyluronium hexafluorophosphate (HATU)/dimethyl sulfoxide in situ neutralization as the coupling agent and incorporates a protected amino acid residue every 5 min to produce peptides of good quality. This rapid coupling chemistry was successfully demonstrated by synthesizing several small to medium peptides, including the "difficult" C-terminal sequence of HIV-1 proteinase (residues 81-99); fragment 65-74 of the acyl carrier protein; conotoxin PnIA(A10L), a potent neuronal nicotinic receptor antagonist; and the pro-inflammatory chemotactic protein CP10, an 88-residue protein, by means of native chemical ligation. The benefits of this approach include enhanced ability to identify and characterize "difficult couplings," rapid access to peptides for biological and structure-activity studies, and accelerated synthesis of tailored large peptide segments (<50 residues) for use in chemoselective ligation methods.
肽和小蛋白质的化学合成是重组蛋白过表达的一种强大的补充策略,广泛应用于结构生物学、免疫学、蛋白质工程和生物医学研究。尽管在肽链组装的保真度、侧链保护和合成后分析方面有了显著改进,但合成含有超过50个残基的多肽的一个限制因素仍然是链组装所需的时间。这项工作的最终目标是建立高效的化学方法,实现每小时约10 - 15个残基的链组装速率,从而支持长多肽和蛋白质的快速化学合成,包括细胞因子、生长因子、蛋白质结构域和小酶。在此,我们报告一种Boc化学方法,该方法采用O-(7-氮杂苯并三唑-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐(HATU)/二甲基亚砜原位中和作为偶联剂,每5分钟掺入一个受保护的氨基酸残基,以产生高质量的肽。通过合成几种中小肽成功证明了这种快速偶联化学方法,包括HIV-1蛋白酶的“困难”C端序列(第81 - 99位残基);酰基载体蛋白的65 - 74片段;芋螺毒素PnIA(A10L),一种有效的神经元烟碱受体拮抗剂;以及促炎趋化蛋白CP10,一种88个残基的蛋白质,采用天然化学连接法合成。这种方法的优点包括增强识别和表征“困难偶联”的能力、快速获得用于生物学和构效关系研究的肽,以及加速合成用于化学选择性连接方法的定制大肽段(<50个残基)。