Suppr超能文献

嗜热醋酸梭菌对醋酸盐生物合成和硝酸盐呼吸的硝酸盐依赖性调控。

Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum.

作者信息

Arendsen A F, Soliman M Q, Ragsdale S W

机构信息

Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA.

出版信息

J Bacteriol. 1999 Mar;181(5):1489-95. doi: 10.1128/JB.181.5.1489-1495.1999.

Abstract

Nitrate has been shown to shunt the electron flow in Clostridium thermoaceticum from CO2 to nitrate, but it did not influence the levels of enzymes involved in the Wood-Ljungdahl pathway (J. M. Fröstl, C. Seifritz, and H. L. Drake, J. Bacteriol. 178:4597-4603, 1996). Here we show that under some growth conditions, nitrate does in fact repress proteins involved in the Wood-Ljungdahl pathway. The CO oxidation activity in crude extracts of nitrate (30 mM)-supplemented cultures was fivefold less than that of nitrate-free cultures, while the H2 oxidation activity was six- to sevenfold lower. The decrease in CO oxidation activity paralleled a decrease in CO dehydrogenase (CODH) protein level, as confirmed by Western blot analysis. Protein levels of CODH in nitrate-supplemented cultures were 50% lower than those in nitrate-free cultures. Western blots analyses showed that nitrate also decreased the levels of the corrinoid iron-sulfur protein (60%) and methyltransferase (70%). Surprisingly, the decrease in activity and protein levels upon nitrate supplementation was observed only when cultures were continuously sparged. Northern blot analysis indicates that the regulation of the proteins involved in the Wood-Ljungdahl pathway by nitrate is at the transcriptional level. At least a 10-fold decrease in levels of cytochrome b was observed with nitrate supplementation whether the cultures were sparged or stoppered. We also detected nitrate-inducible nitrate reductase activity (2 to 39 nmol min-1 mg-1) in crude extracts of C. thermoaceticum. Our results indicate that nitrate coordinately represses genes encoding enzymes and electron transport proteins in the Wood-Ljungdahl pathway and activates transcription of nitrate respiratory proteins. CO2 also appears to induce expression of the Wood-Ljungdahl pathway genes and repress nitrate reductase activity.

摘要

硝酸盐已被证明可使嗜热栖热放线菌中的电子流从二氧化碳转向硝酸盐,但它并未影响参与伍德-龙格达尔途径的酶的水平(J.M.弗罗斯特尔、C.塞弗里茨和H.L.德雷克,《细菌学杂志》178:4597 - 4603,1996年)。在此我们表明,在某些生长条件下,硝酸盐实际上确实会抑制参与伍德-龙格达尔途径的蛋白质。添加了硝酸盐(30 mM)的培养物粗提物中的一氧化碳氧化活性比无硝酸盐培养物低五倍,而氢气氧化活性则低六至七倍。一氧化碳氧化活性的降低与一氧化碳脱氢酶(CODH)蛋白水平的降低平行,这通过蛋白质印迹分析得到证实。添加硝酸盐的培养物中CODH的蛋白水平比无硝酸盐培养物低50%。蛋白质印迹分析表明,硝酸盐还降低了类咕啉铁硫蛋白(60%)和甲基转移酶(70%)的水平。令人惊讶的是,仅当培养物持续通气时才观察到添加硝酸盐后活性和蛋白水平的降低。RNA印迹分析表明,硝酸盐对伍德-龙格达尔途径中相关蛋白质的调节是在转录水平。无论培养物是通气还是密封,添加硝酸盐后细胞色素b的水平至少降低了10倍。我们还在嗜热栖热放线菌的粗提物中检测到了硝酸盐诱导型硝酸还原酶活性(2至39 nmol min⁻¹ mg⁻¹)。我们的结果表明,硝酸盐协同抑制伍德-龙格达尔途径中编码酶和电子传递蛋白的基因,并激活硝酸盐呼吸蛋白的转录。二氧化碳似乎也会诱导伍德-龙格达尔途径基因的表达并抑制硝酸还原酶活性。

相似文献

1
Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum.
J Bacteriol. 1999 Mar;181(5):1489-95. doi: 10.1128/JB.181.5.1489-1495.1999.
2
Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis.
mBio. 2016 May 24;7(3):e00427-16. doi: 10.1128/mBio.00427-16.
7
Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum.
J Bacteriol. 1993 Dec;175(24):8008-13. doi: 10.1128/jb.175.24.8008-8013.1993.
9
Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum.
Sci Rep. 2022 Jan 10;12(1):411. doi: 10.1038/s41598-021-03999-x.

引用本文的文献

1
Carbon Monoxide-Sensing Transcription Factors: Regulators of Microbial Carbon Monoxide Oxidation Pathway Gene Expression.
J Bacteriol. 2023 May 25;205(5):e0033222. doi: 10.1128/jb.00332-22. Epub 2023 May 8.
2
Energy conservation under extreme energy limitation: the role of cytochromes and quinones in acetogenic bacteria.
Extremophiles. 2021 Nov;25(5-6):413-424. doi: 10.1007/s00792-021-01241-0. Epub 2021 Sep 4.
3
Studies on Syngas Fermentation With in Stirred-Tank Reactors With Defined Gas Impurities.
Front Microbiol. 2021 Apr 15;12:655390. doi: 10.3389/fmicb.2021.655390. eCollection 2021.
4
Overcoming Energetic Barriers in Acetogenic C1 Conversion.
Front Bioeng Biotechnol. 2020 Dec 23;8:621166. doi: 10.3389/fbioe.2020.621166. eCollection 2020.
5
Carbon Isotope Fractionation during Catabolism and Anabolism in Acetogenic Bacteria Growing on Different Substrates.
Appl Environ Microbiol. 2016 Apr 18;82(9):2728-2737. doi: 10.1128/AEM.03502-15. Print 2016 May.
6
Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria.
Nat Rev Microbiol. 2014 Dec;12(12):809-21. doi: 10.1038/nrmicro3365. Epub 2014 Nov 10.
7
Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica.
J Bacteriol. 2014 Sep;196(18):3303-14. doi: 10.1128/JB.01839-14. Epub 2014 Jul 7.
10
Dissecting the in vivo metabolic potential of two human gut acetogens.
J Biol Chem. 2010 Jul 16;285(29):22082-90. doi: 10.1074/jbc.M110.117713. Epub 2010 May 5.

本文引用的文献

1
Carbon Dioxide Utilization in the Synthesis of Acetic Acid by Clostridium Thermoaceticum.
Proc Natl Acad Sci U S A. 1945 Aug;31(8):219-25. doi: 10.1073/pnas.31.8.219.
3
4
Carbon dioxide as a regulator of gene expression in microorganisms.
Antonie Van Leeuwenhoek. 1998 Jan;73(1):79-85. doi: 10.1023/a:1000610225458.
8
Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1.
J Bacteriol. 1996 Jun;178(11):3140-5. doi: 10.1128/jb.178.11.3140-3145.1996.
10
Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum.
J Bacteriol. 1993 Dec;175(24):8008-13. doi: 10.1128/jb.175.24.8008-8013.1993.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验