Wagner O, Zinke J, Dancker P, Grill W, Bereiter-Hahn J
Zoologisches, Physikalisches Institut der Johann Wolfgang Goethe Universität-Frankfurt/M, Frankfurt, Germany.
Biophys J. 1999 May;76(5):2784-96. doi: 10.1016/S0006-3495(99)77432-1.
A nondestructive method to determine viscoelastic properties of gels and fluids involves an oscillating glass fiber serving as a sensor for the viscosity of the surrounding fluid. Extremely small displacements (typically 1-100 nm) are caused by the glass rod oscillating at its resonance frequency. These displacements are analyzed using a phase-sensitive acoustic microscope. Alterations of the elastic modulus of a fluid or gel change the propagation speed of a longitudinal acoustic wave. The system allows to study quantities as small as 10 microliters with temporal resolution >1 Hz. For 2-100 microM f-actin gels a final viscosity of 1.3-9.4 mPa s and a final elastic modulus of 2.229-2.254 GPa (corresponding to 1493-1501 m/s sound velocity) have been determined. For 10- to 100-microM microtubule gels (native, without stabilization by taxol), a final viscosity of 1.5-124 mPa s and a final elastic modulus of 2.288-2. 547 GPa (approximately 1513-1596 m/s) have been determined. During polymerization the sound velocity in low-concentration actin solutions increased up to +1.3 m/s (approximately 1.69 kPa) and decreased up to -7 m/s (approximately 49 kPa) at high actin concentrations. On polymerization of tubulin a concentration-dependent decrease of sound velocity was observed, too (+48 to -12 m/s approximately 2.3-0.1 MPa, for 10- to 100-microM tubulin). This decrease was interpreted by a nematic phase transition of the actin filaments and microtubules with increasing concentration. 2 mM ATP (when compared to 0.2 mM ATP) increased polymerization rate, final viscosity and elastic modulus of f-actin (17 microM). The actin-binding glycolytic enzyme hexokinase also accelerated the polymerization rate and final viscosity but elastic modulus (2.26 GPa) was less than for f-actin polymerized in presence of 0.2 mM ATP (2.28 GPa).
一种用于测定凝胶和流体粘弹性特性的无损方法,涉及使用一根振荡的玻璃纤维作为周围流体粘度的传感器。玻璃杆以其共振频率振荡会引起极小的位移(通常为1 - 100纳米)。使用相敏声学显微镜对这些位移进行分析。流体或凝胶弹性模量的变化会改变纵向声波的传播速度。该系统能够研究低至10微升的量,时间分辨率大于1赫兹。对于2 - 100微摩尔/升的f - 肌动蛋白凝胶,已测定其最终粘度为1.3 - 9.4毫帕·秒,最终弹性模量为2.229 - 2.254吉帕(对应声速1493 - 1501米/秒)。对于10 - 100微摩尔/升的微管凝胶(天然的,未用紫杉醇稳定),已测定其最终粘度为1.5 - 124毫帕·秒,最终弹性模量为2.288 - 2.547吉帕(约1513 - 1596米/秒)。在聚合过程中,低浓度肌动蛋白溶液中的声速在高肌动蛋白浓度下增加高达 +1.3米/秒(约1.69千帕),并降低高达 -7米/秒(约49千帕)。在微管蛋白聚合时,也观察到声速随浓度降低(对于10 - 100微摩尔/升的微管蛋白,为 +48至 -12米/秒,约2.3 - 0.1兆帕)。这种降低被解释为肌动蛋白丝和微管随着浓度增加发生向列相转变。2毫摩尔/升的ATP(与0.2毫摩尔/升的ATP相比)提高了f - 肌动蛋白(17微摩尔/升)的聚合速率、最终粘度和弹性模量。肌动蛋白结合糖酵解酶己糖激酶也加速了聚合速率和最终粘度,但弹性模量(2.26吉帕)低于在0.2毫摩尔/升ATP存在下聚合的f - 肌动蛋白(2.28吉帕)。