Suppr超能文献

蓝藻的非核糖体肽合成与产毒能力

Nonribosomal peptide synthesis and toxigenicity of cyanobacteria.

作者信息

Neilan B A, Dittmann E, Rouhiainen L, Bass R A, Schaub V, Sivonen K, Börner T

机构信息

School of Microbiology and Immunology, The University of New South Wales, Sydney 2052, New South Wales, Australia.

出版信息

J Bacteriol. 1999 Jul;181(13):4089-97. doi: 10.1128/JB.181.13.4089-4097.1999.

Abstract

Nonribosomal peptide synthesis is achieved in prokaryotes and lower eukaryotes by the thiotemplate function of large, modular enzyme complexes known collectively as peptide synthetases. These and other multifunctional enzyme complexes, such as polyketide synthases, are of interest due to their use in unnatural-product or combinatorial biosynthesis (R. McDaniel, S. Ebert-Khosla, D. A. Hopwood, and C. Khosla, Science 262:1546-1557, 1993; T. Stachelhaus, A. Schneider, and M. A. Marahiel, Science 269:69-72, 1995). Most nonribosomal peptides from microorganisms are classified as secondary metabolites; that is, they rarely have a role in primary metabolism, growth, or reproduction but have evolved to somehow benefit the producing organisms. Cyanobacteria produce a myriad array of secondary metabolites, including alkaloids, polyketides, and nonribosomal peptides, some of which are potent toxins. This paper addresses the molecular genetic basis of nonribosomal peptide synthesis in diverse species of cyanobacteria. Amplification of peptide synthetase genes was achieved by use of degenerate primers directed to conserved functional motifs of these modular enzyme complexes. Specific detection of the gene cluster encoding the biosynthetic pathway of the cyanobacterial toxin microcystin was shown for both cultured and uncultured samples. Blot hybridizations, DNA amplifications, sequencing, and evolutionary analysis revealed a broad distribution of peptide synthetase gene orthologues in cyanobacteria. The results demonstrate a molecular approach to assessing preexpression microbial functional diversity in uncultured cyanobacteria. The nonribosomal peptide biosynthetic pathways detected may lead to the discovery and engineering of novel antibiotics, immunosuppressants, or antiviral agents.

摘要

在原核生物和低等真核生物中,非核糖体肽的合成是通过一类被统称为肽合成酶的大型模块化酶复合物的硫酯模板功能来实现的。这些以及其他多功能酶复合物,如聚酮合酶,因其在非天然产物或组合生物合成中的应用而备受关注(R. 麦克丹尼尔、S. 埃伯特 - 霍斯拉、D. A. 霍普伍德和C. 霍斯拉,《科学》262:1546 - 1557,1993;T. 施塔切尔豪斯、A. 施耐德和M. A. 马拉希尔,《科学》269:69 - 72,1995)。大多数来自微生物的非核糖体肽被归类为次生代谢产物;也就是说,它们在初级代谢、生长或繁殖中很少发挥作用,但已经进化到以某种方式使产生这些物质的生物体受益。蓝细菌产生大量的次生代谢产物,包括生物碱、聚酮化合物和非核糖体肽,其中一些是强效毒素。本文探讨了不同种类蓝细菌中非核糖体肽合成的分子遗传基础。通过使用针对这些模块化酶复合物保守功能基序的简并引物,实现了肽合成酶基因的扩增。对于培养和未培养的样品,都显示出对编码蓝细菌毒素微囊藻毒素生物合成途径的基因簇进行了特异性检测。印迹杂交、DNA扩增、测序和进化分析揭示了肽合成酶基因直系同源物在蓝细菌中的广泛分布。结果证明了一种分子方法可用于评估未培养蓝细菌中微生物功能的预表达多样性。检测到的非核糖体肽生物合成途径可能会导致新型抗生素、免疫抑制剂或抗病毒药物的发现和工程改造。

相似文献

1
Nonribosomal peptide synthesis and toxigenicity of cyanobacteria.蓝藻的非核糖体肽合成与产毒能力
J Bacteriol. 1999 Jul;181(13):4089-97. doi: 10.1128/JB.181.13.4089-4097.1999.
5
Directing the Heterologous Production of Specific Cyanobacterial Toxin Variants.指导特定蓝藻毒素变体的异源生产。
ACS Chem Biol. 2017 Aug 18;12(8):2021-2029. doi: 10.1021/acschembio.7b00181. Epub 2017 Jun 7.
8
The genetics and genomics of cyanobacterial toxicity.蓝藻毒性的遗传学与基因组学
Adv Exp Med Biol. 2008;619:417-52. doi: 10.1007/978-0-387-75865-7_17.

引用本文的文献

2
Transdisciplinary approaches for the study of cyanobacteria and cyanotoxins.用于研究蓝藻和蓝藻毒素的跨学科方法。
Curr Res Microb Sci. 2024 Oct 11;7:100289. doi: 10.1016/j.crmicr.2024.100289. eCollection 2024.
4
Process Technologies of Cyanobacteria.蓝藻的工艺技术。
Adv Biochem Eng Biotechnol. 2023;183:303-352. doi: 10.1007/10_2022_214.

本文引用的文献

10
A nonribosomal system of peptide biosynthesis.一种非核糖体肽生物合成系统。
Eur J Biochem. 1996 Mar 1;236(2):335-51. doi: 10.1111/j.1432-1033.1996.00335.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验