Suppr超能文献

永久寒冷海洋沉积物中细菌多样性高。

High bacterial diversity in permanently cold marine sediments.

作者信息

Ravenschlag K, Sahm K, Pernthaler J, Amann R

机构信息

Molecular Ecology Group, Max-Planck-Institute for Marine Microbiology, D-28359 Bremen, Germany.

出版信息

Appl Environ Microbiol. 1999 Sep;65(9):3982-9. doi: 10.1128/AEM.65.9.3982-3989.1999.

Abstract

A 16S ribosomal DNA (rDNA) clone library from permanently cold marine sediments was established. Screening 353 clones by dot blot hybridization with group-specific oligonucleotide probes suggested a predominance of sequences related to bacteria of the sulfur cycle (43.4% potential sulfate reducers). Within this fraction, the major cluster (19.0%) was affiliated with Desulfotalea sp. and other closely related psychrophilic sulfate reducers isolated from the same habitat. The cloned sequences showed between 93 and 100% similarity to these bacteria. Two additional groups were frequently encountered: 13% of the clones were related to Desulfuromonas palmitatis, and a second group was affiliated with Myxobacteria spp. and Bdellovibrio spp. Many clones (18.1%) belonged to the gamma subclass of the class Proteobacteria and were closest to symbiotic or free-living sulfur oxidizers. Probe target groups were further characterized by amplified rDNA restriction analysis to determine diversity within the groups and within the clone library. Rarefaction analysis suggested that the total diversity assessed by 16S rDNA analysis was very high in these permanently cold sediments and was only partially revealed by screening of 353 clones.

摘要

构建了一个来自永久寒冷海洋沉积物的16S核糖体DNA(rDNA)克隆文库。用组特异性寡核苷酸探针通过斑点杂交筛选353个克隆,结果表明与硫循环细菌相关的序列占优势(43.4%为潜在硫酸盐还原菌)。在这一部分中,主要类群(19.0%)与脱硫弧菌属及从同一栖息地分离出的其他密切相关的嗜冷硫酸盐还原菌有关。克隆序列与这些细菌的相似性在93%至100%之间。另外还经常遇到两个类群:13%的克隆与棕榈酸脱硫单胞菌有关,第二个类群与黏细菌属和蛭弧菌属有关。许多克隆(18.1%)属于变形菌纲γ亚类,与共生或自由生活的硫氧化菌关系最为密切。通过扩增rDNA限制性分析进一步对探针靶标类群进行表征,以确定类群内部和克隆文库内部的多样性。稀疏分析表明,通过16S rDNA分析评估这些永久寒冷沉积物中的总多样性非常高,而通过筛选353个克隆仅部分揭示了这种多样性。

相似文献

1
High bacterial diversity in permanently cold marine sediments.
Appl Environ Microbiol. 1999 Sep;65(9):3982-9. doi: 10.1128/AEM.65.9.3982-3989.1999.
2
Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments.
Appl Environ Microbiol. 1999 Sep;65(9):3976-81. doi: 10.1128/AEM.65.9.3976-3981.1999.
4
Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments.
Appl Environ Microbiol. 2003 Jun;69(6):3181-91. doi: 10.1128/AEM.69.6.3181-3191.2003.
5
Prokaryotic diversity in Zostera noltii-colonized marine sediments.
Appl Environ Microbiol. 2000 Apr;66(4):1715-9. doi: 10.1128/AEM.66.4.1715-1719.2000.
6
Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes.
Geobiology. 2010 Dec;8(5):417-32. doi: 10.1111/j.1472-4669.2010.00247.x.
7
Culturability and In situ abundance of pelagic bacteria from the North Sea.
Appl Environ Microbiol. 2000 Jul;66(7):3044-51. doi: 10.1128/AEM.66.7.3044-3051.2000.
8
Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis.
Microbiology (Reading). 1999 Nov;145 ( Pt 11):3305-3315. doi: 10.1099/00221287-145-11-3305.
9
Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments.
Appl Environ Microbiol. 2000 Aug;66(8):3592-602. doi: 10.1128/AEM.66.8.3592-3602.2000.
10
Microbial community diversity in seafloor basalt from the Arctic spreading ridges.
FEMS Microbiol Ecol. 2004 Nov 1;50(3):213-30. doi: 10.1016/j.femsec.2004.06.014.

引用本文的文献

1
Marine particle microbiomes during a spring diatom bloom contain active sulfate-reducing bacteria.
FEMS Microbiol Ecol. 2024 Apr 10;100(5). doi: 10.1093/femsec/fiae037.
2
Structure of Benthic Microbial Communities in the Northeastern Part of the Barents Sea.
Microorganisms. 2024 Feb 15;12(2):387. doi: 10.3390/microorganisms12020387.
4
The Impact of Sea Ice Cover on Microbial Communities in Antarctic Shelf Sediments.
Microorganisms. 2023 Jun 14;11(6):1572. doi: 10.3390/microorganisms11061572.
5
Bacterial communities in temperate and polar coastal sands are seasonally stable.
ISME Commun. 2021 Jun 28;1(1):29. doi: 10.1038/s43705-021-00028-w.
6
Iron and sulfate reduction structure microbial communities in (sub-)Antarctic sediments.
ISME J. 2021 Dec;15(12):3587-3604. doi: 10.1038/s41396-021-01014-9. Epub 2021 Jun 21.
7
A Shallow Water Ferrous-Hulled Shipwreck Reveals a Distinct Microbial Community.
Front Microbiol. 2020 Aug 19;11:1897. doi: 10.3389/fmicb.2020.01897. eCollection 2020.
8
Transformation of organic matter in a Barents Sea sediment profile: coupled geochemical and microbiological processes.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20200223. doi: 10.1098/rsta.2020.0223. Epub 2020 Aug 31.
9
Insight into the Possible Use of the Predator as a Probiotic.
Nutrients. 2020 Jul 28;12(8):2252. doi: 10.3390/nu12082252.
10
Complex Microbial Communities Drive Iron and Sulfur Cycling in Arctic Fjord Sediments.
Appl Environ Microbiol. 2019 Jul 1;85(14). doi: 10.1128/AEM.00949-19. Print 2019 Jul 15.

本文引用的文献

1
The Nonconcept of Species Diversity: A Critique and Alternative Parameters.
Ecology. 1971 Jul;52(4):577-586. doi: 10.2307/1934145.
2
ARB: a software environment for sequence data.
Nucleic Acids Res. 2004 Feb 25;32(4):1363-71. doi: 10.1093/nar/gkh293. Print 2004.
3
Pathways of organic carbon oxidation in three continental margin sediments.
Mar Geol. 1993;113:27-40. doi: 10.1016/0025-3227(93)90147-n.
4
Distribution and abundance of Gram-positive bacteria in the environment: development of a group-specific probe.
J Microbiol Methods. 2001 Apr;44(3):193-203. doi: 10.1016/s0167-7012(00)00243-8.
5
Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments.
Appl Environ Microbiol. 1999 Sep;65(9):4230-3. doi: 10.1128/AEM.65.9.4230-4233.1999.
6
Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments.
Appl Environ Microbiol. 1999 Sep;65(9):3976-81. doi: 10.1128/AEM.65.9.3976-3981.1999.
7
Phylogenetic and physiological diversity of sulphate-reducing bacteria isolated from a salt marsh sediment.
Syst Appl Microbiol. 1998 Dec;21(4):557-68. doi: 10.1016/s0723-2020(98)80068-4.
8
Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes.
Microbiology (Reading). 1998 Dec;144 ( Pt 12):3257-3266. doi: 10.1099/00221287-144-12-3257.
9
Molecular analyses of the sediment of the 11,000-m deep Mariana Trench.
Extremophiles. 1997 Aug;1(3):117-23. doi: 10.1007/s007920050024.
10
Microbial Community Composition of Wadden Sea Sediments as Revealed by Fluorescence In Situ Hybridization.
Appl Environ Microbiol. 1998 Jul 1;64(7):2691-6. doi: 10.1128/AEM.64.7.2691-2696.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验